Boles M. A. Engel M. Talapin D. V. (2016). Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chem. Rev. 116, 11220–11289. 10.1021/acs.chemrev.6b00196
Britun N. Michiels M. Godfroid T. Snyders R. (2018). Ion Density Evolution in a High-Power Sputtering Discharge With Bipolar Pulsing. Appl. Phys. Lett. 112, 234103. 10.1063/1.5030697
Chauvin A. Sergievskaya A. El Mel A.-A. Fucikova A. Antunes Corrêa C. Vesely J. et al. (2020). Co-Sputtering of Gold and Copper onto Liquids: A Route towards the Production of Porous Gold Nanoparticles. Nanotechnology 31, 455303. 10.1088/1361-6528/abaa75
Depla D. Leroy W. P. (2012). Magnetron Sputter Deposition as Visualized by Monte Carlo Modeling. Thin Solid Films 520, 6337–6354. 10.1016/j.tsf.2012.06.032
Depla D. (2013). Magnetrons, Reactive Gases and Sputtering. Diederik Depla Available at: https://biblio.ugent.be/publication/4239033 (Accessed February 08, 2021).
Esumi K. Hosoya T. Suzuki A. Torigoe K. (2000). Formation of Gold and Silver Nanoparticles in Aqueous Solution of Sugar-Persubstituted Poly(Amidoamine) Dendrimers. J. Colloid Interf. Sci. 226, 346–352. 10.1006/jcis.2000.6849
Finney E. E. Finke R. G. (2008). Nanocluster Nucleation and Growth Kinetic and Mechanistic Studies: A Review Emphasizing Transition-Metal Nanoclusters. J. Colloid Interf. Sci. 317, 351–374. 10.1016/j.jcis.2007.05.092
Finney E. E. Shields S. P. Buhro W. E. Finke R. G. (2012). Gold Nanocluster Agglomeration Kinetic Studies: Evidence for Parallel Bimolecular Plus Autocatalytic Agglomeration Pathways as a Mechanism-Based Alternative to an Avrami-Based Analysis. Chem. Mater. 24, 1718–1725. 10.1021/cm203186y
García-Lojo D. Núñez-Sánchez S. Gómez-Graña S. Grzelczak M. Pastoriza-Santos I. Pérez-Juste J. et al. (2019). Plasmonic Supercrystals. Acc. Chem. Res. 52, 1855–1864. 10.1021/acs.accounts.9b00213
Garzón-Manjón A. Meyer H. Grochla D. Löffler T. Schuhmann W. Ludwig A. et al. (2018). Controlling the Amorphous and Crystalline State of Multinary Alloy Nanoparticles in an Ionic Liquid. Nanomaterials 8, 903. 10.3390/nano8110903
Hamm S. C. Basuray S. Mukherjee S. Sengupta S. Mathai J. C. Baker G. A. et al. (2014). Ionic Conductivity Enhancement of Sputtered Gold Nanoparticle-In-Ionic Liquid Electrolytes. J. Mater. Chem. A. 2, 792–803. 10.1039/C3TA13431H
Harada M. Inada Y. (2009). In Situ Time-Resolved XAFS Studies of Metal Particle Formation by Photoreduction in Polymer Solutions. Langmuir 25, 6049–6061. 10.1021/la900550t
Hatakeyama Y. Onishi K. Nishikawa K. (2011). Effects of Sputtering Conditions on Formation of Gold Nanoparticles in Sputter Deposition Technique. RSC Adv. 1, 1815–1821. 10.1039/c1ra00688f
Kagan C. R. Lifshitz E. Sargent E. H. Talapin D. V. (2016). Building Devices from Colloidal Quantum Dots. Science 353, aac5523. 10.1126/science.aac5523
Kovalenko M. V. Manna L. Cabot A. Hens Z. Talapin D. V. Kagan C. R. et al. (2015). Prospects of Nanoscience with Nanocrystals. ACS Nano 9, 1012–1057. 10.1021/nn506223h
Lee S. H. Jung H. K. Kim T. C. Kim C. H. Shin C. H. Yoon T.-S. et al. (2018). Facile Method for the Synthesis of Gold Nanoparticles Using an Ion Coater. Appl. Surf. Sci. 434, 1001–1006. 10.1016/j.apsusc.2017.11.008
Liz-Marzán L. (Editors) (2020). Colloidal Synthesis of Plasmonic Nanometals (New York: Jenny Stanford Publishing). 10.1201/9780429295188
Meischein M. Garzón-Manjón A. Frohn T. Meyer H. Salomon S. Scheu C. et al. (2019). Combinatorial Synthesis of Binary Nanoparticles in Ionic Liquids by Cosputtering and Mixing of Elemental Nanoparticles. ACS Comb. Sci. 21, 743–752. 10.1021/acscombsci.9b00140
Mohamed H. H. Dillert R. Bahnemann D. W. (2011). Growth and Reactivity of Silver Nanoparticles on the Surface of TiO2: A Stopped-Flow Study. J. Phys. Chem. C 115, 12163–12172. 10.1021/jp2031576
Nguyen M. T. Yonezawa T. (2018). Sputtering Onto a Liquid: Interesting Physical Preparation Method for Multi-Metallic Nanoparticles. Sci. Technol. Adv. Mater. 19, 883–898. 10.1080/14686996.2018.1542926
Nguyen M. T. Wongrujipairoj K. Tsukamoto H. Kheawhom S. Mei S. Aupama V. et al. (2020). Synergistic Effect of the Oleic Acid and Oleylamine Mixed-Liquid Matrix on Particle Size and Stability of Sputtered Metal Nanoparticles. ACS Sustainable Chem. Eng. 8, 18167–18176. 10.1021/acssuschemeng.0c06549
Orozco-Montes V. Caillard A. Brault P. Chamorro-Coral W. Bigarre J. Sauldubois A. et al. (2021). Synthesis of Platinum Nanoparticles by Plasma Sputtering onto Glycerol: Effect of Argon Pressure on Their Physicochemical Properties. J. Phys. Chem. C 125, 3169–3179. 10.1021/acs.jpcc.0c09746
Patel V. R. Dumancas G. G. Viswanath L. C. K. Maples R. Subong B. J. J. (2016). Castor Oil: Properties, Uses, and Optimization of Processing Parameters in Commercial Production. Lipid Insights 9, 1–12. 10.4137/LPI.S40233
Qadir M. I. Kauling A. Ebeling G. Fartmann M. Grehl T. Dupont J. (2019). Functionalized Ionic Liquids Sputter Decorated With Pd Nanoparticles. Aust. J. Chem. 72, 49. 10.1071/CH18183
Sarakinos K. Alami J. Konstantinidis S. (2010). High Power Pulsed Magnetron Sputtering: A Review on Scientific and Engineering State of the Art. Surf. Coat. Technol. 204, 1661–1684. 10.1016/j.surfcoat.2009.11.013
Sebastian V. Arruebo M. Santamaria J. (2014). Reaction Engineering Strategies for the Production of Inorganic Nanomaterials. Small 10, 835–853. 10.1002/smll.201301641
Sergievskaya A. P. Tatarchuk V. V. Makotchenko E. V. Mironov I. V. (2015). Formation of Gold Nanoparticles during the Reduction of HAuBr4 in Reverse Micelles of Oxyethylated Surfactant: Influence of Gold Precursor on the Growth Kinetics and Properties of the Particles. J. Mater. Res. 30, 1925–1933. 10.1557/jmr.2015.121
Sergievskaya A. O’Reilly A. Chauvin A. Veselý J. Panepinto A. De Winter J. et al. (2021). Magnetron Sputter Deposition of Silver onto castor Oil: The Effect of Plasma Parameters on Nanoparticle Properties. Colloids Surf. A: Physicochem. Eng. Aspects 615, 126286. 10.1016/j.colsurfa.2021.126286
Shishino Y. Yonezawa T. Kawai K. Nishihara H. (2010). Molten Matrix Sputtering Synthesis of Water-Soluble Luminescent Au Nanoparticles with a Large Stokes Shift. Chem. Commun. 46, 7211. 10.1039/c0cc01702g
Shishino Y. Yonezawa T. Udagawa S. Hase K. Nishihara H. (2011). Preparation of Optical Resins Containing Dispersed Gold Nanoparticles by the Matrix Sputtering Method. Angew. Chem. 123, 729–731. 10.1002/ange.201005723
Slepička P. Elashnikov R. Ulbrich P. Staszek M. Kolská Z. Švorčík V. (2015). Stabilization of Sputtered Gold and Silver Nanoparticles in PEG Colloid Solutions. J. Nanopart. Res. 17. 10.1007/s11051-014-2850-z
Sugioka D. Kameyama T. Kuwabata S. Torimoto T. (2015). Single-step Preparation of Two-Dimensionally Organized Gold Particles via Ionic Liquid/Metal Sputter Deposition. Phys. Chem. Chem. Phys. 17, 13150–13159. 10.1039/c5cp01602a
Sumi T. Motono S. Ishida Y. Shirahata N. Yonezawa T. (2015). Formation and Optical Properties of Fluorescent Gold Nanoparticles Obtained by Matrix Sputtering Method with Volatile Mercaptan Molecules in the Vacuum Chamber and Consideration of Their Structures. Langmuir 31, 4323–4329. 10.1021/acs.langmuir.5b00294
Suzuki T. Okazaki K.-i. Kiyama T. Kuwabata S. Torimoto T. (2009). A Facile Synthesis of AuAg Alloy Nanoparticles Using a Chemical Reaction Induced by Sputter Deposition of Metal onto Ionic Liquids. Electrochemistry 77, 636–638. 10.5796/electrochemistry.77.636
Talapin D. V. Lee J.-S. Kovalenko M. V. Shevchenko E. V. (2010). Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chem. Rev. 110, 389–458. 10.1021/cr900137k
Thanh N. T. K. Maclean N. Mahiddine S. (2014). Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chem. Rev. 114, 7610–7630. 10.1021/cr400544s
Torimoto T. Okazaki K.-i. Kiyama T. Hirahara K. Tanaka N. Kuwabata S. (2006). Sputter Deposition onto Ionic Liquids: Simple and Clean Synthesis of Highly Dispersed Ultrafine Metal Nanoparticles. Appl. Phys. Lett. 89, 243117. 10.1063/1.2404975
Torimoto T. Kameyama T. Kuwabata S. (2016). “Top-Down Synthesis Methods for Nanoscale Catalysts,” in Nanocatalysis In Ionic Liquids. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 171–205. 10.1002/9783527693283.ch9
Tsuda T. Yoshii K. Torimoto T. Kuwabata S. (2010). Oxygen Reduction Catalytic Ability of Platinum Nanoparticles Prepared by Room-Temperature Ionic Liquid-Sputtering Method. J. Power Sourc. 195, 5980–5985. 10.1016/j.jpowsour.2009.11.027
Van Aeken K. Mahieu S. Depla D. (2008). The Metal Flux from a Rotating Cylindrical Magnetron: A Monte Carlo Simulation. J. Phys. D: Appl. Phys. 41, 205307. 10.1088/0022-3727/41/20/205307
Vanecht E. Binnemans K. Seo J. W. Stappers L. Fransaer J. (2011). Growth of Sputter-Deposited Gold Nanoparticles in Ionic Liquids. Phys. Chem. Chem. Phys. 13, 13565–13571. 10.1039/c1cp20552h
Vanecht E. Binnemans K. Patskovsky S. Meunier M. Seo J. W. Stappers L. et al. (2012). Stability of Sputter-Deposited Gold Nanoparticles in Imidazolium Ionic Liquids. Phys. Chem. Chem. Phys. 14, 5662. 10.1039/c2cp23677j
Wagener M. Murty B. S. Günther B. (1996). Preparation of Metal Nanosuspensions by High-Pressure DC-Sputtering on Running Liquids. MRS Proc. 457, 149. 10.1557/PROC-457-149
Wang F. Richards V. N. Shields S. P. Buhro W. E. (2014). Kinetics and Mechanisms of Aggregative Nanocrystal Growth. Chem. Mater. 26, 5–21. 10.1021/cm402139r
Watzky M. A. Finke R. G. (1997). Transition Metal Nanocluster Formation Kinetic and Mechanistic Studies. A New Mechanism When Hydrogen is the Reductant: Slow, Continuous Nucleation and Fast Autocatalytic Surface Growth. J. Am. Chem. Soc. 119, 10382–10400. 10.1021/ja9705102
Watzky M. A. Finke R. G. (2018). Gold Nanoparticle Formation Kinetics and Mechanism: A Critical Analysis of the “Redox Crystallization” Mechanism. ACS Omega 3, 1555–1563. 10.1021/acsomega.7b01772
Wender H. De Oliveira L. F. Feil A. F. Lissner E. Migowski P. Meneghetti M. R. et al. (2010). Synthesis of Gold Nanoparticles in a Biocompatible Fluid from Sputtering Deposition Onto Castor Oil. Chem. Commun. 46, 7019–7021. 10.1039/c0cc01353f
Wender H. Gonçalves R. V. Feil A. F. Migowski P. Poletto F. S. Pohlmann A. R. et al. (2011). Sputtering onto Liquids: From Thin Films to Nanoparticles. J. Phys. Chem. C 115, 16362–16367. 10.1021/jp205390d
Wender H. Migowski P. Feil A. F. Teixeira S. R. Dupont J. (2013). Sputtering Deposition of Nanoparticles onto Liquid Substrates: Recent Advances and Future Trends. Coord. Chem. Rev. 257, 2468–2483. 10.1016/j.ccr.2013.01.013