Article (Scientific journals)
Matrix stiffness modulates formation and activity of neuronal networks of controlled architectures
Lantoine, Joséphine; Grevesse, Thomas; Villers, Agnès et al.
2016In Biomaterials, 89, p. 14-24
Peer Reviewed verified by ORBi
 

Files


Full Text
2016_Biomaterials.pdf
Publisher postprint (2.93 MB)
Request a copy

All documents in ORBi UMONS are protected by a user license.

Send to



Details



Abstract :
[en] The ability to construct easily in vitro networks of primary neurons organized with imposed topologies is required for neural tissue engineering as well as for the development of neuronal interfaces with desirable characteristics. However, accumulating evidence suggests that the mechanical properties of the culture matrix can modulate important neuronal functions such as growth, extension, branching and activity. Here we designed robust and reproducible laminin-polylysine grid micropatterns on cell culture substrates that have similar biochemical properties but a 100-fold difference in Young's modulus to investigate the role of the matrix rigidity on the formation and activity of cortical neuronal networks. We found that cell bodies of primary cortical neurons gradually accumulate in circular islands, whereas axonal extensions spread on linear tracks to connect circular islands. Our findings indicate that migration of cortical neurons is enhanced on soft substrates, leading to a faster formation of neuronal networks. Furthermore, the pre-synaptic density was two times higher on stiff substrates and consistently the number of action potentials and miniature synaptic currents was enhanced on stiff substrates. Taken together, our results provide compelling evidence to indicate that matrix stiffness is a key parameter to modulate the growth dynamics, synaptic density and electrophysiological activity of cortical neuronal networks, thus providing useful information on scaffold design for neural tissue engineering.
Disciplines :
Biochemistry, biophysics & molecular biology
Chemistry
Author, co-author :
Lantoine, Joséphine ;  Université de Mons > Faculté des Sciences > Laboratoire Interfaces et Fluides Complexes
Grevesse, Thomas 
Villers, Agnès  ;  Université de Mons > Faculté de Médecine et de Pharmacie > Service de Neurosciences
Delhaye, Geoffrey
Versaevel, Marie
Mohammed, Danahe ;  Université de Mons > Faculté des Sciences > Laboratoire Interfaces et Fluides Complexes
Bruyere, Céline ;  Université de Mons > Faculté des Sciences > Laboratoire Interfaces et Fluides Complexes
Alaimo, Laura ;  Université de Mons > Faculté des Sciences > Laboratoire Interfaces et Fluides Complexes
Lacour, Stéphanie
Ris, Laurence ;  Université de Mons > Faculté de Médecine et de Pharmacie > Neurosciences
Gabriele, Sylvain  ;  Université de Mons > Faculté des Sciences > Laboratoire Interfaces et Fluides Complexes
Language :
English
Title :
Matrix stiffness modulates formation and activity of neuronal networks of controlled architectures
Publication date :
26 February 2016
Journal title :
Biomaterials
ISSN :
0142-9612
Publisher :
Elsevier, United Kingdom
Volume :
89
Pages :
14-24
Peer reviewed :
Peer Reviewed verified by ORBi
Research unit :
S885 - Laboratoire Interfaces et Fluides complexes
Research institute :
R100 - Institut des Biosciences
Available on ORBi UMONS :
since 05 July 2015

Statistics


Number of views
1 (0 by UMONS)
Number of downloads
0 (0 by UMONS)

Scopus citations®
 
61
Scopus citations®
without self-citations
50

Bibliography


Similar publications



Contact ORBi UMONS