Schmid, G., (eds.) Nanoparticles: From Theory to Application, 2nd, compl ed., 2010, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sebastian, V., Arruebo, M., Santamaria, J., Reaction engineering strategies for the production of inorganic nanomaterials. Small 10 (2014), 835–853, 10.1002/smll.201301641.
Panariello, L., Damilos, S., Du Toit, H., Wu, G., Radhakrishnan, A.N.P., Parkin, I.P., Gavriilidis, A., Highly reproducible, high-yield flow synthesis of gold nanoparticles based on a rational reactor design exploiting the reduction of passivated Au(iii). React. Chem. Eng. 5 (2020), 663–676, 10.1039/c9re00469f.
Yatsuya, S., Mihama, K., Uyeda, R., A new technique for the preparation of extremely fine metal particles. Jpn. J. Appl. Phys. 13 (1974), 749–750, 10.1143/JJAP.13.749.
Yatsuya, S., Tsukasaki, Y., Mihama, K., Uyeda, R., Preparation of extremely fine particles by vacuum evaporation onto a running oil substrate. J. Cryst. Growth 45 (1978), 490–494, 10.1016/0022-0248(78)90481-5.
Ye, G.X., Zhang, Q.R., Feng, C., Ge, H., Jiao, Z., Structural and electrical properties of a metallic rough-thin-film system deposited on liquid substrates. Phys. Rev. B 54 (1996), 14754–14757, 10.1103/PhysRevB.54.14754.
Wagener, M., Murty, B.S., Günther, B., Preparation of metal nanosuspensions by high-pressure DC-Sputtering on running liquids. MRS Proc., 457, 1996, 149, 10.1557/PROC-457-149.
Torimoto, T., Okazaki, K.I., Kiyama, T., Hirahara, K., Tanaka, N., Kuwabata, S., Sputter deposition onto ionic liquids: simple and clean synthesis of highly dispersed ultrafine metal nanoparticles. Appl. Phys. Lett., 89, 2006, 243117, 10.1063/1.2404975.
Vanecht, E., Binnemans, K., Seo, J.W., Stappers, L., Fransaer, J., Growth of sputter-deposited gold nanoparticles in ionic liquids. Phys. Chem. Chem. Phys. 13 (2011), 13565–13571, 10.1039/c1cp20552h.
Carette, X., Debièvre, B., Cornil, D., Cornil, J., Leclère, P., Maes, B., Gautier, N., Gautron, E., El Mel, A.A., Raquez, J.M., Konstantinidis, S., On the sputtering of titanium and silver onto liquids, discussing the formation of nanoparticles. J. Phys. Chem. C 122 (2018), 26605–26612, 10.1021/acs.jpcc.8b06987.
Britun, N., Michiels, M., Godfroid, T., Snyders, R., Ion density evolution in a high-power sputtering discharge with bipolar pulsing. Appl. Phys. Lett., 112, 2018, 234103, 10.1063/1.5030697.
Depla, D., Magnetrons, Reactive Gases and Sputtering. Third edition, 2015, Diederik Depla, UGent.
Wasa, K., Adachi, H., Kitabatake, M., Thin Film Materials Technology: Sputtering of Compound Materials. 2004.
Chauvin, A., Sergievskaya, A., El Mel, A.-A.A., Fucikova, A., Antunes Corr a, C., Vesely, J., Duverger-Nédellec, E., Cornil, D., Cornil, J., Tessier, P.-Y.Y., Dopita, M., Konstantinidis, S., Antunes Corrêa, C., Vesely, J., Duverger-Nédellec, E., Cornil, D., Cornil, J., Tessier, P.-Y.Y., Dopita, M., Konstantinidis, S., Co-sputtering of gold and copper onto liquids: a route towards the production of porous gold nanoparticles. Nanotechnology, 31, 2020, 455303, 10.1088/1361-6528/abaa75.
Hourahine, B., Aradi, B., Blum, V., Bonafé, F., Buccheri, A., Camacho, C., Cevallos, C., Deshaye, M.Y., Dumitrică, T., Dominguez, A., Ehlert, S., Elstner, M., van der Heide, T., Hermann, J., Irle, S., Kranz, J.J., Köhler, C., Kowalczyk, T., Kubař, T., Lee, I.S., Lutsker, V., Maurer, R.J., Min, S.K., Mitchell, I., Negre, C., Niehaus, T.A., Niklasson, A.M.N., Page, A.J., Pecchia, A., Penazzi, G., Persson, M.P., Řezáč, J., Sánchez, C.G., Sternberg, M., Stöhr, M., Stuckenberg, F., Tkatchenko, A., Yu, V.W.-z., Frauenheim, T., DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J. Chem. Phys., 152, 2020, 124101, 10.1063/1.5143190.
Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, T., Suhai, S., Seifert, G., Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 58 (1998), 7260–7268, 10.1103/PhysRevB.58.7260.
Artacho, E., Anglada, E., Diéguez, O., Gale, J.D., García, A., Junquera, J., Martin, R.M., Ordejón, P., Pruneda, J.M., Sánchez-Portal, D., Soler, J.M., The SIESTA method; developments and applicability. J. Phys. Condens. Matter, 20, 2008, 064208, 10.1088/0953-8984/20/6/064208.
Perdew, J.P., Burke, K., Wang, Y., Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 54 (1996), 16533–16539, 10.1103/PhysRevB.54.16533.
Troullier, N., Martins, J.L., Efficient pseudopotentials for plane-wave calculations. II. Operators for fast iterative diagonalization. Phys. Rev. B 43 (1991), 8861–8869, 10.1103/PhysRevB.43.8861.
Kilin, D.S., Prezhdo, O.V., Xia, Y., Shape-controlled synthesis of silver nanoparticles: ab initio study of preferential surface coordination with citric acid. Chem. Phys. Lett. 458 (2008), 113–116, 10.1016/j.cplett.2008.04.046.
Pastoriza-Santos, I., Liz-Marzán, L.M., Colloidal silver nanoplates. State of the art and future challenges. J. Mater. Chem., 18, 2008, 1724, 10.1039/b716538b.
Patel, V.R., Dumancas, G.G., Viswanath, L.C.K., Maples, R., Subong, B.J.J., Castor oil: properties, uses, and optimization of processing parameters in commercial production. Lipid Insights, 9, 2016, 10.4137/LPI.S40233 LPI.S40233.
Wender, H., Gonçalves, R.V., Feil, A.F., Migowski, P., Poletto, F.S., Pohlmann, A.R., Dupont, J., Teixeira, S.R., Sputtering onto liquids: from thin films to nanoparticles. J. Phys. Chem. C 115 (2011), 16362–16367, 10.1021/jp205390d.
Fujita, A., Matsumoto, Y., Takeuchi, M., Ryuto, H., Takaoka, G.H., Growth behavior of gold nanoparticles synthesized in unsaturated fatty acids by vacuum evaporation methods. Phys. Chem. Chem. Phys. 18 (2016), 5464–5470, 10.1039/C5CP07323E.
Wender, H., De Oliveira, L.F., Feil, A.F., Lissner, E., Migowski, P., Meneghetti, M.R., Teixeira, S.R., Dupont, J., Synthesis of gold nanoparticles in a biocompatible fluid from sputtering deposition onto castor oil. Chem. Commun. 46 (2010), 7019–7021, 10.1039/c0cc01353f.
Aleali, H., Mansour, N., Thermal-induced nonlinearity enhancement in Ag nanoparticles colloids by low thermal conductivity liquids. J. Opt. 48 (2019), 172–178, 10.1007/s12596-019-00520-6.
Zamiri, R., Zakaria, A., Abbastabar, H., Darroudi, M., Husin, M.S., Mahdi, M.A., Laser-fabricated castor oil-capped silver nanoparticles. Int. J. Nanomedicine 6 (2011), 565–568, 10.2147/IJN.S16384.
Corpuz, R.D., Ishida, Y., Yonezawa, T., Synthesis of cationically charged photoluminescent coinage metal nanoclusters by sputtering over a liquid polymer matrix. New J. Chem. 41 (2017), 6828–6833, 10.1039/c7nj01369h.
Ishida, Y., Nakabayashi, R., Matsubara, M., Yonezawa, T., Silver sputtering into a liquid matrix containing mercaptans: the systematic size control of silver nanoparticles in single nanometer-orders. New J. Chem. 39 (2015), 4227–4230, 10.1039/c5nj00294j.
Deng, L., Nguyen, M.T., Mei, S., Tokunaga, T., Kudo, M., Matsumura, S., Yonezawa, T., Preparation and growth mechanism of Pt/Cu alloy nanoparticles by sputter deposition onto a liquid polymer. Langmuir 35 (2019), 8418–8427, 10.1021/acs.langmuir.9b01112.
Tsuda, T., Yoshii, K., Torimoto, T., Kuwabata, S., Oxygen reduction catalytic ability of platinum nanoparticles prepared by room-temperature ionic liquid-sputtering method. J. Power Sources 195 (2010), 5980–5985, 10.1016/j.jpowsour.2009.11.027.
Raghuwanshi, V.S., Ochmann, M., Hoell, A., Polzer, F., Rademann, K., Deep eutectic solvents for the self-assembly of gold nanoparticles: a SAXS, UV–vis, and TEM investigation. Langmuir 30 (2014), 6038–6046, 10.1021/la500979p.
Mulvaney, P., Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 2002, 10.1021/la9502711.
Hatakeyama, Y., Onishi, K., Nishikawa, K., Effects of sputtering conditions on formation of gold nanoparticles in sputter deposition technique. RSC Adv. 1 (2011), 1815–1821, 10.1039/c1ra00688f.
Qadir, M.I., Kauling, A., Ebeling, G., Fartmann, M., Grehl, T., Dupont, J., Functionalized ionic liquids sputter decorated with Pd nanoparticles. Aust. J. Chem., 72, 2019, 49, 10.1071/CH18183.
Sumi, T., Motono, S., Ishida, Y., Shirahata, N., Yonezawa, T., Formation and optical properties of fluorescent gold nanoparticles obtained by matrix sputtering method with volatile mercaptan molecules in the vacuum chamber and consideration of their structures. Langmuir 31 (2015), 4323–4329, 10.1021/acs.langmuir.5b00294.
Suzuki, T., Okazaki, K., Kiyama, T., Kuwabata, S., Torimoto, T., A facile synthesis of AuAg alloy nanoparticles using a chemical reaction induced by sputter deposition of metal onto ionic liquids. Electrochemistry 77 (2009), 636–638, 10.5796/electrochemistry.77.636.
Sugioka, D., Kameyama, T., Kuwabata, S., Torimoto, T., Single-step preparation of two-dimensionally organized gold particles via ionic Liquid/Metal sputter deposition. Phys. Chem. Chem. Phys. 17 (2015), 13150–13159, 10.1039/c5cp01602a.
Thomann, A.-L.L., Caillard, A., Raza, M., El Mokh, M., Cormier, P.A.A., Konstantinidis, S., Energy flux measurements during magnetron sputter deposition processes. Surf. Coat. Technol., 377, 2019, 124887, 10.1016/j.surfcoat.2019.08.016.
Wagener, M., Günther, B., High pressure DC-magnetron sputtering on liquids: a new process for the production of metal nanosuspensions. Struct. Dyn. Prop. Disperse Colloid. Syst., 1998, Steinkopff, Darmstadt, 78–81 https://link.springer.com/chapter/10.1007/BFb0118113.
Wagener, M., Günther, B., Sputtering on liquids - A versatile process for the production of magnetic suspensions?. J. Magn. Magn. Mater. 201 (1999), 41–44, 10.1016/S0304-8853(99)00055-4.
Sarakinos, K., Alami, J., Konstantinidis, S., High power pulsed magnetron sputtering: a review on scientific and engineering state of the art. Surf. Coat. Technol. 204 (2010), 1661–1684, 10.1016/j.surfcoat.2009.11.013.
Keraudy, J., Viloan, R.P.B., Raadu, M.A., Brenning, N., Lundin, D., Helmersson, U., Bipolar HiPIMS for tailoring ion energies in thin film deposition. Surf. Coat. Technol. 359 (2019), 433–437, 10.1016/j.surfcoat.2018.12.090.
Garzón-Manjón, A., Meyer, H., Grochla, D., Löffler, T., Schuhmann, W., Ludwig, A., Scheu, C., Controlling the amorphous and crystalline state of multinary alloy nanoparticles in an ionic liquid. Nanomaterials, 8, 2018, 903, 10.3390/nano8110903.
Thornton, J.A., Substrate heating in cylindrical magnetron sputtering sources. Thin Solid Films 54 (1978), 23–31, 10.1016/0040-6090(78)90273-0.
Cormier, P.-A., Thomann, A.-L., Dolique, V., Balhamri, A., Dussart, R., Semmar, N., Lecas, T., Brault, P., Snyders, R., Konstantinidis, S., IR emission from the target during plasma magnetron sputter deposition. Thin Solid Films 545 (2013), 44–49, 10.1016/j.tsf.2013.07.025.
Hatakeyama, Y., Takahashi, S., Nishikawa, K., Can temperature control the size of Au nanoparticles prepared in ionic liquids by the sputter deposition technique?. J. Phys. Chem. C 114 (2010), 11098–11102, 10.1021/jp102763n.
Hatakeyama, Y., Morita, T., Takahashi, S., Onishi, K., Nishikawa, K., Synthesis of gold nanoparticles in liquid polyethylene glycol by sputter deposition and temperature effects on their size and shape. J. Phys. Chem. C 115 (2011), 3279–3285, 10.1021/jp110455k.
Mun, E.A., Hannell, C., Rogers, S.E., Hole, P., Williams, A.C., Khutoryanskiy, V.V., On the role of specific interactions in the diffusion of nanoparticles in aqueous polymer solutions. Langmuir 30 (2014), 308–317, 10.1021/la4029035.
Active Standard ASTM D341 -. 20e1- Standard Practice for Viscosity-Temperature Equations and Charts for Liquid Petroleum or Hydrocarbon Products, (n.d.). https://www.astm.org/Standards/D341-.htm.
Schmitz, A., Meyer, H., Meischein, M., Garzón Manjón, A., Schmolke, L., Giesen, B., Schlüsener, C., Simon, P., Grin, Y., Fischer, R.A., Scheu, C., Ludwig, A., Janiak, C., Synthesis of plasmonic Fe/Al nanoparticles in ionic liquids. RSC Adv. 10 (2020), 12891–12899, 10.1039/D0RA01111H.