[en] By analogy with hydrogen-bonded molecular capsules, self-assembled nanotubes are of interest because they can temporarily isolate guest molecules from the solution. We show here that the stability of a particular bis-urea based dynamic self-assembled nanotube is related to the possibility for solvent molecules to fit inside the tubular cavity. The diameter of the cavity can be finely tuned by introducing a modified monomer in controlled amount.
Disciplines :
Chimie Physique
Auteur, co-auteur :
Isare, B.
Linares, M.
Lazzaroni, Roberto ; Université de Mons > Faculté des Sciences > Service de Chimie des matériaux nouveaux
Bouteiller, L.
Langue du document :
Anglais
Titre :
Engineering the Cavity of Self-Assembled Dynamic Nanotubes
Date de publication/diffusion :
19 mars 2009
Titre du périodique :
Journal of Physical Chemistry B
ISSN :
1520-6106
Maison d'édition :
American Chemical Society, Etats-Unis - District de Columbia
Volume/Tome :
113
Fascicule/Saison :
11
Pagination :
3360-3364
Peer reviewed :
Peer reviewed vérifié par ORBi
Unité de recherche :
S817 - Chimie des matériaux nouveaux
Institut de recherche :
R400 - Institut de Recherche en Science et Ingénierie des Matériaux
(d) Böhmer, V.; Vysotsky, M. O. Aust. J. Chem. 2001, 54, 671-677.
(e) Schmuck, C. Angew. Chem., Int. Ed. 2007, 46, 5830-5833.
Schramm, M. P.; Rebek, J., Jr. Chem.sEur. J. 2006, 12, 5924- 5933.
Recent examples of expanded capsules:
(a) Kerckhoffs, J. M. C. A.; ten Cate, M. G. J.; Mateos-Timoneda, M. A.; van Leeuwen, F. W. B.; Snellink-Ruel, B.; Spek, A. L.; Kooijman, H.; Crego-Calama, M.; Reinhoudt, D. N. J. Am. Chem. Soc. 2005, 127, 12687-12708.
(b) Ajami, D.; Rebek, J., Jr. J. Am. Chem. Soc. 2006, 128, 5314-5315.
(c) Ajami, D.; Rebek, J., Jr. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 16000-16003.
(e) Huerta, E.; Metselaar, G. A.; Fragoso, A.; Santos, E.; Bo, C.; de Mendosa, J. Angew. Chem., Int. Ed. 2007, 46, 202-205.
(f) Baillargeon, P.; Dory, Y. L. J. Am. Chem. Soc. 2008, 130, 5640-5641.
(a) Fernandez-Lopez, S.; Kim, H.-S.; Choi, E. C.; Delgado, M.; Granja, J. R.; Khasanov, A.; Kraehenbuehl, K.; Long, G.; Weinberger, D. A.; Wilcoxen, K. M.; Ghadiri, M. R. Nature 2001, 412, 452-455.
(b) Bong, D. T.; Clark, T. D.; Granja, J. R.; Ghadiri, M. R. Angew. Chem., Int. Ed. 2001, 40, 988-1011.
(c) Percec, V.; Dulcey, A. E.; Balagurusamy, V. S. K.; Miura, Y.; Smidrkal, J.; Peterca, M.; Nummelin, S.; Edlund, U.; Hudson, S. D.; Heiney, P. A.; Duan, H.; Magonov, S. N.; Vinogradov, S. A. Nature 2004, 430, 764-768.
(d) Cazacu, A.; Tong, C.; van der Lee, A.; Fyles, T. M.; Barboiu, M. J. Am. Chem. Soc. 2006, 128, 9541-9548.
(e) Davis, J. T.; Spada, G. P. Chem. Soc. Rev. 2007, 36, 296-313.
TINKER - Software Tools for Molecular Design, accessed Nov 2008; http://dasher.wustl.edu/tinker/.
Allinger, N. L.; Yuh, Y. H.; Lii, J. H. J. Am. Chem. Soc. 1989, 111, 8551-8566.
Ma, B. Y.; Lii, J. H.; Allinger, N. L. J. Comput. Chem. 2000, 21, 813-825.
Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graphics 1996, 14, 33-38.
Swiss-PdbViewer, accessed Oct 2008; http://spdbv.vital-it.ch/.
Bis-urea 2 did not form nanotubes at room temperature in any solvent tested: in chloroform, 2 forms the same filaments as 1 (Table 1); in dodecane, 2 is not soluble.
(a) For a related solvation effect in a foldamer cavity, see:
(b) Mio, M. J.; Prince, R. B.; Moore, J. S. J. Am. Chem. Soc. 2000, 122, 6134- 6135.
A video of the whole simulation can be viewed at http:// mail.materianova.be/pub/ehut-ehutmb.mov.
Isare, B.; Bouteiller, L.; Ducouret, G.; Lequeux, F. Supramol. Chem. 2009, 21, published online: DOI 10.1080/10610270802105106.
Up to now, our efforts to find a direct spectroscopic signature of the encapsulated solvent have been unsuccessful, because of the very broad NMR signal for bis-ureas 1 and 2 in nonpolar solvents.
For the rheological characterization of solutions of bis-urea 1: Ducouret, G.; Chassenieux, C.; Martins, S.; Lequeux, F.; Bouteiller, L. J. Colloid Interface Sci., 2007, 310, 624-629.