Comprehensive lipid profiling of Microchloropsis gaditana by liquid chromatography - (tandem) mass spectrometry: Bead milling and extraction solvent effects
CIRMAP - Centre d'Innovation et de Recherche en Matériaux Polymères CISMA - Centre Interdisciplinaire de Spectrométrie de Masse
Disciplines :
Chemistry
Author, co-author :
Cauchie, Gaela
Delfau-Bonnet, Guillaume ; Université de Mons > Faculté Polytechnique > Service de Génie des Procédés chimiques et biochimiques
Caulier, Guillaume ; Université de Mons > Faculté des Sciences > Service de Biologie des Organismes Marins et Biomimétisme
Hantson, Anne-Lise ; Université de Mons > Faculté Polytechnique > Service de Génie des Procédés chimiques et biochimiques
Renault, Jean-Hugues
Gerbaux, Pascal ; Université de Mons > Faculté des Sciences > Service de Synthèse et spectrométrie de masse organiques
Language :
English
Title :
Comprehensive lipid profiling of Microchloropsis gaditana by liquid chromatography - (tandem) mass spectrometry: Bead milling and extraction solvent effects
Publication date :
19 June 2021
Journal title :
Algal Research
ISSN :
2211-9264
Publisher :
Elsevier, Netherlands
Volume :
58
Peer reviewed :
Peer Reviewed verified by ORBi
Research unit :
S816 - Matériaux Polymères et Composites S836 - Synthèse et spectrométrie de masse organiques
Research institute :
R400 - Institut de Recherche en Science et Ingénierie des Matériaux R100 - Institut des Biosciences
Demirbas, A., Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog. Energy Combust. Sci. 31 (2005), 466–487, 10.1016/j.pecs.2005.09.001.
Baicha, Z., Salar-García, M.J., Ortiz-Martínez, V.M., Hernández-Fernández, F.J., Ríos, A.P. de los, Labjar, N., Lotfi, E., Elmahi, M., A critical review on microalgae as an alternative source for bioenergy production: a promising low cost substrate for microbial fuel cells. Fuel Process. Technol. 154 (2016), 104–116, 10.1016/j.fuproc.2016.08.017.
Singh, A., Olsen, S.I., A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl. Energy 88 (2011), 3548–3555, 10.1016/j.apenergy.2010.12.012.
FAO, (eds.) Biofuels: Prospects, Risks and Opportunities, 2008, FAO, Rome.
Sims, R.E.H., Mabee, W., Saddler, J.N., Taylor, M., An overview of second generation biofuel technologies. Bioresour. Technol. 101 (2010), 1570–1580, 10.1016/j.biortech.2009.11.046.
Nigam, P.S., Singh, A., Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. 37 (2011), 52–68, 10.1016/j.pecs.2010.01.003.
Demirbas, A., Demirbas, M. Fatih, Importance of algae oil as a source of biodiesel. Energy Convers. Manag. 52 (2011), 163–170, 10.1016/j.enconman.2010.06.055.
Hu, Q., Environmental effects on cell composition. Handb. Microalgal Cult, 2007, John Wiley & Sons, Ltd, 83–94, 10.1002/9780470995280.ch5.
De Bhowmick, G., Subramanian, G., Mishra, S., Sen, R., Raceway pond cultivation of a marine microalga of Indian origin for biomass and lipid production: a case study. Algal Res. 6 (2014), 201–209, 10.1016/j.algal.2014.07.005.
Demirbas, A., Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers. Manag. 49 (2008), 2106–2116, 10.1016/j.enconman.2008.02.020.
Ramos-Suárez, J.L., Carreras, N., Use of microalgae residues for biogas production. Chem. Eng. J. 242 (2014), 86–95, 10.1016/j.cej.2013.12.053.
Lena, G. Di, Casini, I., Lucarini, M., Lombardi-Boccia, G., Carotenoid profiling of five microalgae species from large-scale production. Food Res. Int. 120 (2019), 810–818, 10.1016/j.foodres.2018.11.043.
Koller, M., Muhr, A., Braunegg, G., Microalgae as versatile cellular factories for valued products. Algal Res. 6 (2014), 52–63, 10.1016/j.algal.2014.09.002.
Wijffels, R.H., Barbosa, M.J., Eppink, M.H.M., Microalgae for the production of bulk chemicals and biofuels. Biofuels Bioprod. Biorefin. 4 (2010), 287–295, 10.1002/bbb.215.
Sørensen, M., Gong, Y., Bjarnason, F., Vasanth, G.K., Dahle, D., Huntley, M., Kiron, V., Nannochloropsis oceania-derived defatted meal as an alternative to fishmeal in Atlantic salmon feeds. PLoS One, 12, 2017, e0179907, 10.1371/journal.pone.0179907.
Zanella, L., Vianello, F., Microalgae of the genus Nannochloropsis: chemical composition and functional implications for human nutrition. J. Funct. Foods, 68, 2020, 103919, 10.1016/j.jff.2020.103919.
Becker, W., Microalgae in human and animal nutrition. Handb. Microalgal Cult, 2007, John Wiley & Sons, Ltd, 312–351, 10.1002/9780470995280.ch18.
Hibberd, D.J., Notes on the taxonomy and nomenclature of the algal classes Eustigmatophyceae and Tribophyceae (synonym Xanthophyceae). Bot. J. Linn. Soc. 82 (1981), 93–119, 10.1111/j.1095-8339.1981.tb00954.x.
Lubián, L.M., Nannochloropsis gaditana sp. nov., una nueva Eustigmatophyceae marina. Lazaroa. 4 (1982), 287–293.
Molino, A., Iovine, A., Casella, P., Mehariya, S., Chianese, S., Cerbone, A., Rimauro, J., Musmarra, D., Microalgae characterization for consolidated and new application in human food, animal feed and nutraceuticals. Int. J. Environ. Res. Public Health, 15, 2018, 10.3390/ijerph15112436.
Fahy, E., Sud, M., Cotter, D., Subramaniam, S., LIPID MAPS online tools for lipid research. Nucleic Acids Res. 35 (2007), W606–W612, 10.1093/nar/gkm324.
Fahy, E., Subramaniam, S., Murphy, R.C., Nishijima, M., Raetz, C.R.H., Shimizu, T., Spener, F., Meer, G. van, Wakelam, M.J.O., Dennis, E.A., Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. 50 (2009), S9–S14, 10.1194/jlr.R800095-JLR200.
Bligh, E.G., Dyer, W.J., A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37 (1959), 911–917, 10.1139/y59-099.
Folch, J., Lees, M., Stanley, G.H.S., A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226 (1957), 497–509.
Murphy, R.C., Axelsen, P.H., Mass spectrometric analysis of long-chain lipids. Mass Spectrom. Rev. 30 (2011), 579–599, 10.1002/mas.20284.
Milne, S., Ivanova, P., Forrester, J., Brown, H. Alex, Lipidomics: an analysis of cellular lipids by ESI-MS. Methods. 39 (2006), 92–103, 10.1016/j.ymeth.2006.05.014.
Figueiredo, A.R.P., da Costa, E., Silva, J., Domingues, M.R., Domingues, P., The effects of different extraction methods of lipids from Nannochloropsis oceanica on the contents of omega-3 fatty acids. Algal Res., 41, 2019, 101556, 10.1016/j.algal.2019.101556.
Byreddy, A.R., Gupta, A., Barrow, C.J., Puri, M., Comparison of cell disruption methods for improving lipid extraction from thraustochytrid strains. Mar. Drugs 13 (2015), 5111–5127, 10.3390/md13085111.
Matyash, V., Liebisch, G., Kurzchalia, T.V., Shevchenko, A., Schwudke, D., Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 49 (2008), 1137–1146, 10.1194/jlr.D700041-JLR200.
Angles, E., Jaouen, P., Pruvost, J., Marchal, L., Wet lipid extraction from the microalga Nannochloropsis sp.: disruption, physiological effects and solvent screening. Algal Res. 21 (2017), 27–34, 10.1016/j.algal.2016.11.005.
Günerken, E., D'Hondt, E., Eppink, M.H.M., Garcia-Gonzalez, L., Elst, K., Wijffels, R.H., Cell disruption for microalgae biorefineries. Biotechnol. Adv. 33 (2015), 243–260, 10.1016/j.biotechadv.2015.01.008.
Pohndorf, R.S., Camara, Á.S., Larrosa, A.P.Q., Pinheiro, C.P., Strieder, M.M., Pinto, L.A.A., Production of lipids from microalgae Spirulina sp.: influence of drying, cell disruption and extraction methods. Biomass Bioenergy 93 (2016), 25–32, 10.1016/j.biombioe.2016.06.020.
Quesada-Salas, M.C., Delfau-Bonnet, G., Willig, G., Préat, N., Allais, F., Ioannou, I., Optimization and comparison of three cell disruption processes on lipid extraction from microalgae. Processes, 9, 2021, 369, 10.3390/pr9020369.
Halim, R., Harun, R., Danquah, M.K., Webley, P.A., Microalgal cell disruption for biofuel development. Appl. Energy 91 (2012), 116–121, 10.1016/j.apenergy.2011.08.048.
Elst, K., Maesen, M., Jacobs, G., Bastiaens, L., Voorspoels, S., Servaes, K., Supercritical CO2 extraction of Nannochloropsis sp.: a lipidomic study on the influence of pretreatment on yield and composition. Molecules., 23, 2018, 1854, 10.3390/molecules23081854.
Liebisch, G., Vizcaíno, J.A., Köfeler, H., Trötzmüller, M., Griffiths, W.J., Schmitz, G., Spener, F., Wakelam, M.J.O., Shorthand notation for lipid structures derived from mass spectrometry. J. Lipid Res. 54 (2013), 1523–1530, 10.1194/jlr.M033506.
Zinkoné, T.R., Gifuni, I., Lavenant, L., Pruvost, J., Marchal, L., Bead milling disruption kinetics of microalgae: process modeling, optimization and application to biomolecules recovery from Chlorella sorokiniana. Bioresour. Technol. 267 (2018), 458–465, 10.1016/j.biortech.2018.07.080.
Montalescot, V., Rinaldi, T., Touchard, R., Jubeau, S., Frappart, M., Jaouen, P., Bourseau, P., Marchal, L., Optimization of bead milling parameters for the cell disruption of microalgae: process modeling and application to Porphyridium cruentum and Nannochloropsis oculata. Bioresour. Technol. 196 (2015), 339–346, 10.1016/j.biortech.2015.07.075.
Servaes, K., Maesen, M., Prandi, B., Sforza, S., Elst, K., Polar lipid profile of Nannochloropsis oculata determined using a variety of lipid extraction procedures. J. Agric. Food Chem. 63 (2015), 3931–3941, 10.1021/acs.jafc.5b00241.
Savvidou, M.G., Sotiroudis, T.G., Kolisis, F.N., Cell surface and cellular debris-associated heat-stable lipolytic enzyme activities of the marine alga Nannochloropsis oceanica. Biocatal. Biotransform. 34 (2016), 24–32, 10.1080/10242422.2016.1212843.
Okudaira, M., Inoue, A., Shuto, A., Nakanaga, K., Kano, K., Makide, K., Saigusa, D., Tomioka, Y., Aoki, J., Separation and quantification of 2-acyl-1-lysophospholipids and 1-acyl-2-lysophospholipids in biological samples by LC-MS/MS. J. Lipid Res. 55 (2014), 2178–2192, 10.1194/jlr.D048439.
Houjou, T., Yamatani, K., Nakanishi, H., Imagawa, M., Shimizu, T., Taguchi, R., Rapid and selective identification of molecular species in phosphatidylcholine and sphingomyelin by conditional neutral loss scanning and MS3. Rapid Commun. Mass Spectrom. 18 (2004), 3123–3130, 10.1002/rcm.1737.
Guella, G., Frassanito, R., Mancini, I., A new solution for an old problem: the regiochemical distribution of the acyl chains in galactolipids can be established by electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 17 (2003), 1982–1994, 10.1002/rcm.1142.
Pi, J., Wu, X., Feng, Y., Fragmentation patterns of five types of phospholipids by ultra-high-performance liquid chromatography electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Anal. Methods 8 (2016), 1319–1332, 10.1039/C5AY00776C.
Hsu, F.-F., Turk, J., Studies on phosphatidylglycerol with triple quadrupole tandem mass spectrometry with electrospray ionization: fragmentation processes and structural characterization. J. Am. Soc. Mass Spectrom. 12 (2001), 1036–1043, 10.1016/S1044-0305(01)00285-9.
Aslan, M., Özcan, F., Aslan, I., Yücel, G., LC-MS/MS analysis of plasma polyunsaturated fatty acids in type 2 diabetic patients after insulin analog initiation therapy. Lipids Health Dis., 12, 2013, 169, 10.1186/1476-511X-12-169.
Cutignano, A., Luongo, E., Nuzzo, G., Pagano, D., Manzo, E., Sardo, A., Fontana, A., Profiling of complex lipids in marine microalgae by UHPLC/tandem mass spectrometry. Algal Res. 17 (2016), 348–358, 10.1016/j.algal.2016.05.016.
Xu, J., Chen, D., Yan, X., Chen, J., Zhou, C., Global characterization of the photosynthetic glycerolipids from a marine diatom Stephanodiscus sp. by ultra performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight mass spectrometry. Anal. Chim. Acta 663 (2010), 60–68, 10.1016/j.aca.2010.01.026.
Ma, X.-N., Chen, T.-P., Yang, B., Liu, J., Chen, F., Lipid production from Nannochloropsis. Mar. Drugs, 14, 2016, 10.3390/md14040061.
Han, X., Yang, K., Yang, J., Fikes, K.N., Cheng, H., Gross, R.W., Factors influencing the electrospray intrasource separation and selective ionization of glycerophospholipids. J. Am. Soc. Mass Spectrom. 17 (2006), 264–274, 10.1016/j.jasms.2005.11.003.
Murakami, H., Nobusawa, T., Hori, K., Shimojima, M., Ohta, H., Betaine lipid is crucial for adapting to low temperature and phosphate deficiency in Nannochloropsis. Plant Physiol. 177 (2018), 181–193, 10.1104/pp.17.01573.
Decroo, C., Colson, E., Demeyer, M., Lemaur, V., Caulier, G., Eeckhaut, I., Cornil, J., Flammang, P., Gerbaux, P., Tackling saponin diversity in marine animals by mass spectrometry: data acquisition and integration. Anal. Bioanal. Chem. 409 (2017), 3115–3126, 10.1007/s00216-017-0252-7.
Balduyck, L., Bruneel, C., Goiris, K., Dejonghe, C., Foubert, I., Influence of high pressure homogenization on free fatty acid formation in Nannochloropsis sp. Eur. J. Lipid Sci. Technol., 120, 2018, 1700436, 10.1002/ejlt.201700436.
Balduyck, L., Stock, T., Bijttebier, S., Bruneel, C., Jacobs, G., Voorspoels, S., Muylaert, K., Foubert, I., Integrity of the microalgal cell plays a major role in the lipolytic stability during wet storage. Algal Res. 25 (2017), 516–524, 10.1016/j.algal.2017.06.013.
Bernaerts, T.M.M., Verstreken, H., Dejonghe, C., Gheysen, L., Foubert, I., Grauwet, T., Loey, A.M. Van, Cell disruption of Nannochloropsis sp. improves in vitro bioaccessibility of carotenoids and ω3-LC-PUFA. J. Funct. Foods, 65, 2020, 103770, 10.1016/j.jff.2019.103770.