Adam GC, Cravatt BF, Sorensen EJ (2001) Profiling the specific reactivity of the proteome with non-directed activity-based probes. Chem Biol 8:81–95. https://doi.org/10.1016/s1074-5521 (00)90060-7
Aldib I, Soubhye J, Zouaoui Boudjeltia K, Vanhaeverbeek M, Rousseau A, Furtmüller PG, Obinger C, Dufrasne F, Nève J, Van Antwerpen P, Prévost M (2012) Evaluation of new scaffolds of myeloperoxidase inhibitors by rational design combined with high-throughput virtual screening. J Med Chem 55:7208–7218. https://doi.org/10.1021/jm3007245
Ali M, Pulli B, Courties G, Tricot B, Sebas M, Iwamoto Y, Hilgendorf I, Schob S, Dong A, Zheng W, Skoura A, Kalgukar A, Cortes C, Ruggeri R, Swirski FK, Nahrendorf M, Buckbinder L, Chen JW (2016) Myeloperoxidase inhibition improves ventricular function and remodeling after? Experimental myocardial infarction. JACC Basic Transl Sci 1:633–643. https://doi.org/10.1016/j.jacbts.2016.09.004
Arnhold J, Furtmüller PG, Regelsberger G, Obinger C (2001) Redox properties of the couple compound I/native enzyme of myeloperoxidase and eosinophil peroxidase. Eur J Biochem 268:5142–5148. https://doi.org/10.1046/j.0014-2956.2001.02449.x
Arnhold J, Furtmüller PG, Obinger C (2003) Redox properties of myeloperoxidase. Redox Rep 8:179–186. https://doi.org/10.1179/135100003225002664
Arnhold J, Monzani E, Furtmüller PG, Zederbauer M, Casella L, Obinger C (2006) Kinetics and thermodynamics of halide and nitrite oxidation by mammalian heme peroxidases. Eur J Inorg Chem 19:3801–3811. https://doi.org/10.1002/ejic.200600436
Banerjee S, Stampler J, Furtmüller PG, Obinger C (2011) Conformational and thermal stability of mature dimeric human myeloperoxidase and a recombinant monomeric form from CHO cells. Biochim Biophys Acta 1814:375–387. https://doi.org/10.1016/j.bbapap.2010.09.015
Battistuzzi G, Borsari M, Ranieri J, Sola M (2001) Redox thermodynamic of the Fe3+/Fe2+ couple in horseradish peroxidase and its cyanide complex. J Am Chem Soc 124:26–27. https://doi.org/10. 1021/ja017188m
Battistuzzi G, Bellei M, Zederbauer M, Furtmüller PG, Sola M, Obinger C (2006) Redox thermodynamics of the Fe(III)/Fe(II) couple of human myeloperoxidase in its high-spin and low-spin forms. Biochemistry 45:12750–12755. https://doi.org/10.1074/jbc.M610685200
Battistuzzi G, Bellei M, Bortolotti CA, Sola M (2010) Redox properties of heme peroxidases. Arch Biochem Biophys 500:21–36. https://doi.org/10.1016/j.abb.2010.03.002
Battistuzzi G, Stampler J, Bellei M, Vlasits J, Soudi M, Furtmüller PG, Obinger C (2011) Influence of the covalent heme-protein bonds on the redox thermodynamics of human myeloperoxidase. Biochemistry 50:7987–7994. https://doi.org/10.1021/bi2008432
Bekesi G, Heinle H, Kakucs R, Pazmany T, Szombath D, Dinya M, Tulassay Z, Feher J, Racz K, Szekacs B (2005) Effect of inhibitors of myeloperoxidase on the development of aortic atherosclerosis in an animal model. Exp Gerontol 40:199–208. https://doi.org/10.1016/j.exger. 2004.12.004
Blair-Johnson M, Fiedler T, Fenna R (2001) Human myeloperoxidase: structure of a cyanide complex and its interaction with bromide and thiocyanate substrates at 1.9 A resolution. Biochemistry 40:13990–14007. https://doi.org/10.1021/bi0111808
Boufadi YM, Soubhye J, Riazi A, Rousseau A, Vanhaeverbeek M, Nève J, Boudjeltia KZ, Van Antwerpen P (2014) Characterization and antioxidant properties of six Algerian propolis extracts: ethyl acetate extracts inhibit myeloperoxidase activity. Int J Mol Sci 15:2327–2345. https://doi.org/10.3390/ijms15022327
Boufadi Y, Van Antwerpen P, Chikh Alard I, Nève J, Djennas N, Riazi A, Soubhye J (2017) Antioxidant effects and bioavailability evaluation of propolis extract and its content of pure polyphenols. J Food Biochem 42:e12434. https://doi.org/10.1111/jfbc.12434
Bozeman PM, Learn DB, Thomas EL (1992) Inhibition of the human leukocyte enzymes myeloperoxidase and eosinophil peroxidase by dapsone. Biochem Pharmacol 44 (553–563):372. https://doi.org/10.1016/0006-2952(92)90449-s
Burner U, Obinger C, Paumann M, Furtmüller PG, Kettle AJ (1999) Transient and steady-state kinetics of the oxidation of substituted benzoic acid hydrazides by myeloperoxidase. J Biol Chem 274:9494–9502. https://doi.org/10.1074/jbc.274.14.9494
Carpena X, Vidossich P, Schroettner K, Calisto BM, Banerjee S, Stampler J, Soudi M, Furtmüller PG, Rovira C, Fita I, Obinger C (2009) Essential role of proximal histidine-asparagine interaction in mammalian peroxidases. J Biol Chem 284:25929–25937. https://doi.org/10.1074/jbc. M109.002154
Churg A, Marshall CV, Sin DD, Bolton S, Zhou S, Thain K, Cadogan EB, Maltby J, Soars MG, Mallinder PR, Wright JL (2012) Late intervention with a myeloperoxidase inhibitor stops progression of experimental chronic obstructive pulmonary disease. Am J Respir Crit Care Med 185:34–43. https://doi.org/10.1164/rccm.201103-0468OC
Colas C, Ortiz de Montellano PR (2003) Autocatalytic radical reactions in physiological prosthetic heme modification. Chem Rev 103:2305–2332. https://doi.org/10.1021/cr0204303
Colon S, Page-McCaw P, Bhave G (2017) Role of hypohalous acids in basement membrane homeostasis. Antioxid Redox Signal 27:839–854. https://doi.org/10.1089/ars.2017.7245
Davey CA, Fenna RE (1996) 2.3 Å resolution X-ray crystal structure of the bisubstrate analogue inhibitor salicylhydroxamic acid bound to human myeloperoxidase: a model for a prereaction complex with hydrogen peroxide. Biochemistry 35:10967–10973. https://doi.org/10.1021/bi960577m.
Davies MJ (2010) Myeloperoxidase-derived oxidation: mechanisms of biological damage and its prevention. J Clin Biochem Nutr 48:8–19. https://doi.org/10.3164/jcbn.11-006FR
Davies B, Edwards SW (1989) Inhibition of myeloperoxidase by salicylhydroxamic acid. Biochem J 258:801–806. https://doi.org/10.1042/bj2580801
Davies MJ, Hawkins CL (2020) The role of myeloperoxidase in biomolecule modification, chronic inflammation, and disease. Antioxid Redox Signal 32:957–981. https://doi.org/10.1089/ars. 2020.8030
Davies MJ, Hawkins CL, Pattison DI, Rees MD (2008) Tryptophan residues are targets in hypothiocyanous acid-mediated protein oxidation. Antioxid Redox Signal 7:1199–1234. https://doi.org/10.1089/ars.2007.1927
de Jong NWM, Ramyar KX, Guerra FE, Nijland R, Fevre C, Voyich JM, McCarthy AJ, Garcia BL, van Kessel KPM, van Strijp JAG, Geisbrecht BV, Haas PA (2017) Immune evasion by a staphylococcal inhibitor of myeloperoxidase. Proc Natl Acad Sci U S A 114:9439–9444. https://doi.org/10.1073/pnas.1707032114
Dong JQ, Varma MV, Wolford A, Ryder T, Di L, Feng B, Terra SG, Sagawa K, Kalgutkar AS (2016) Pharmacokinetics and disposition of the thiouracil derivative PF-06282999, an orally bioavailable, irreversible inactivator of myeloperoxidase enzyme, across animals and humans. Drug Metab Dispos Biol Fate Chem 44:209–219. https://doi.org/10.1124/dmd.115.067868
Eiserich JP, Hristova M, Cross CE, Jones AD, Freeman BA, Halliwell B, van der Vliet A (1998) Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 391:393–397. https://doi.org/10.1038/34923
Fiedler TJ, Davey CA, Fenna RE (2000) X-ray crystal structure and characterization of halide-binding sites of human myeloperoxidase at 1.8 a resolution. J Biol Chem 2000 (275):11964–11971. https://doi.org/10.1074/jbc.275.16.11964
Forbes LV, Furtmüller PG, Khalilova I, Turner R, Obinger C, Kettle AJ (2012) Isoniazid as a substrate and inhibitor of myeloperoxidase: identification of amine adducts and the influence of superoxide dismutase on their formation. Biochem Pharmacol 84:949–960. https://doi.org/10. 1016/j.bcp.2012.07.020
Forghani R, Wojtkiewicz GR, Zhang Y, Seeburg D, Bautz BRM, Pulli B, Milewski AR, Atkinson WL, Iwamoto Y, Zhang ER, Etzrodt M, Rodriguez E, Robbins CS, Swirski FK, Weissleder R, Chen JW (2012) Demyelinating diseases: myeloperoxidase as an imaging biomarker and therapeutic target. Radiology 263:451–460. https://doi.org/10.1148/radiol.12111593
Foye WO, Lemke TL, Williams DA (eds) (2013) Foye’s principles of medicinal chemistry, 7th edn. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia
Furtmüller PG, Burner U, Obinger C (1998) Reaction of myeloperoxidase compound I with chloride, bromide, iodide, and thiocyanate. Biochemistry 37:17923–17930. https://doi.org/10. 1021/bi9818772
Furtmüller PG, Obinger C, Hsuanyu Y, Dunford HB (2000) Mechanism of reaction of myeloperoxidase with hydrogen peroxide and chloride ion. Eur J Biochem 267:5858–5864. https://doi.org/10.1046/j.1432-1327.2000.01491.x
Furtmüller PG, Jantschko W, Regelsberger G, Jakopitsch C, Moguilevsky N, Obinger C (2001) A transient kinetic study on the reactivity of recombinant unprocessed monomeric myeloperoxidase. FEBS Lett 503:147–150. https://doi.org/10.1016/s0014-5793(01)02725-9
Furtmüller PG, Arnhold J, Jantschko W, Pichler H, Obinger C (2003) Redox properties of the couples compound I/compound II and compound II/native enzyme of human myeloperoxidase. Biochem Biophys Res Commun 301:551–557. https://doi.org/10.1016/s0006-291x(02)03075-9
Furtmüller PG, Arnhold J, Jantschko W, Zederbauer M, Jakopitsch C, Obinger C (2005) Standard reduction potentials of all couples of the peroxidase cycle of lactoperoxidase. J Inorg Biochem 99:1220–1229. https://doi.org/10.1016/j.jinorgbio.2005.02.021
Furtmüller PG, Zederbauer M, Jantschko W, Helm J, Bogner M, Jakopitsch C, Obinger C (2006) Active site structure and catalytic mechanisms of human peroxidases. Arch Biochem Biophys 445:199–213. https://doi.org/10.1016/j.abb.2005.09.017
Galijasevic S, Abdulhamid I, Abu-Soud HM (2008) Melatonin is a potent inhibitor for myeloperoxidase. Biochemistry 47:2668–2677. https://doi.org/10.1021/bi702016q
Gau J, Furtmüller PG, Obinger C, Prévost M, Van Antwerpen P, Arnhold J, Flemmig J (2016) Flavonoids as promoters of the (pseudo-)halogenating activity of lactoperoxidase and myeloperoxidase. Free Radic Biol Med 97:307–319. https://doi.org/10.1016/j.freeradbiomed. 2016.06.026
Green PS, Mendez AJ, Jacob JS, Crowley JR, Growdon W, Hyman BT, Heinecke JW (2004) Neuronal expression of myeloperoxidase is increased in Alzheimer’s disease. J Neurochem 90:724–733. https://doi.org/10.1111/j.1471-4159.2004.02527.x
Grishkovskaya I, Paumann-Page M, Tscheliessnig R, Stampler J, Hofbauer S, Soudi M, Sevcnikar B, Oostenbrink C, Furtmüller PG, Djinović-Carugo K, Nauseef WM, Obinger C (2017) Structure of human promyeloperoxidase (proMPO) and the role of the propeptide in processing and maturation. J Biol Chem 292:8244–8261. https://doi.org/10.1074/jbc.M117. 775031
Hallingbäck HR, Gabdoulline RR, Wade RC (2006) Comparison of the binding and reactivity of plant and mammalian peroxidases to indole derivatives by computational docking. Biochemistry 45:2940–2950. https://doi.org/10.1021/bi051510e
Hori H, Fenna RE, Kimura S, Ikeda-Saito M (1994) Aromatic substrate molecules bind at the distal heme pocket of myeloperoxidase. J Biol Chem 269:8388–8392
Ihalin R, Loimaranta V, Tenovuo J (2006) Origin, structure, and biological activities of peroxidases in human saliva. Arch Biochem Biophys 445:261–268. https://doi.org/10.1016/j.abb.2005.07. 004
Ikeda-Saito M, Shelley DA, Lu L, Booth KS, Caughey WS, Kimura S (1991) Salicylhydroxamic acid inhibits myeloperoxidase activity. J Biol Chem 266:3611–3616
Inghardt T, Johannesson P, Jurva U, Michaëlsson E, Lindstedt-Alstermark E, Tomkinson N, Stonehouse J, Gan L (2016) 1-[2-(aminomethyl)benzyl]-2-thioxo-1,2,3,5-tetrahydro-4h-pyrrolo[3,2-d]pyrimidin-4-ones as inhibitors of myeloperoxidase. WO2016087338A1
Inocencio C, Rivera D, Alcaraz F, Tomás-Barberán FA (2000) Flavonoid content of commercial capers (Capparis spinosa, C. sicula and C. orientalis) produced in mediterranean countries. Eur Food Res Technol 212:70–74. https://doi.org/10.1007/s002170000220
Jantschko W, Furtmüller PG, Allegra M, Livrea MA, Jakopitsch C, Regelsberger G, Obinger C (2002) Redox intermediates of plant and mammalian peroxidases: a comparative transient-kinetic study of their reactivity toward indole derivatives. Arch Biochem Biophys 398:12–22. https://doi.org/10.1006/abbi.2001.2674
Jantschko W, Georg Furtmüller P, Zederbauer M, Lanz M, Jakopitsch C, Obinger C (2003) Direct conversion of ferrous myeloperoxidase to compound II by hydrogen peroxide: an anaerobic stopped-flow study. Biochem Biophys Res Commun 312:292–298. https://doi.org/10.1016/j. bbrc.2003.10.117
Jantschko W, Furtmüller PG, Zederbauer M, Jakopitsch C, Obinger C (2004) Kinetics of oxygen binding to ferrous myeloperoxidase. Arch Biochem Biophys 426:91–97. https://doi.org/10. 1016/j.abb.2004.03.019
Jantschko W, Furtmüller PG, Zederbauer M, Neugschwandtner K, Lehner I, Jakopitsch C, Arnhold J, Obinger C (2005) Exploitation of the unusual thermodynamic properties of human myeloperoxidase in inhibitor design. Biochem Pharmacol 69:1149–1157. https://doi.org/10. 1016/j.bcp.2005.02.006
Jeelani R, Jahanbakhsh S, Kohan-Ghadr H-R, Thakur M, Khan S, Aldhaheri SR, Yang Z, Andreana P, Morris R, Abu-Soud HM (2017) Mesna (2-mercaptoethane sodium sulfonate) functions as a regulator of myeloperoxidase. Free Radic Biol Med 110:54–62. https://doi.org/10.1016/j.freeradbiomed.2017.05.019
Jiang H, Li X, Tang C (2011) Effect of purple sweet potato flavonoids on metabolism of glucose and lipids in diabetic rats. Zhejiang Xue Xue Bao Yi Xue Ban J Zhejiang Univ Med Sci 40:374–379
Jucaite A, Svenningsson P, Rinne JO, Cselényi Z, Varnäs K, Johnström P, Amini N, Kirjavainen A, Helin S, Minkwitz M, Kugler AR, Posener JA, Budd S, Halldin C, Varrone A, Farde L (2015) Effect of the myeloperoxidase inhibitor AZD3241 on microglia: a PET study in Parkinson’s disease. Brain J Neurol 138:2687–2700. https://doi.org/10.1093/brain/awv184
Kettle AJ, Gedye CA, Hampton MB, Winterbourn CC (1995) Inhibition of myeloperoxidase by benzoic acid hydrazides. Biochem J 308:559–563. https://doi.org/10.1042/bj3080559
Kettle AJ, Gedye CA, Winterbourn CC (1997) Mechanism of inactivation of myeloperoxidase by 4-aminobenzoic acid hydrazide. Biochem J 321:503–508. https://doi.org/10.1042/bj3210503
Kim H, Wei Y, Lee JY, Wu Y, Zheng Y, Moskowitz MA, Chen JW (2016) Myeloperoxidase inhibition increases neurogenesis after ischemic stroke. J Pharmacol Exp Ther 359:262–272. https://doi.org/10.1124/jpet.116.235127
Klebanoff SJ (1977) Estrogen binding by leukocytes during phagocytosis. J Exp Med 145:983–998. https://doi.org/10.1084/jem.145.4.983
Klebanoff SJ, Green WL (1973) Degradation of thyroid hormones by phagocytosing human leukocytes. J Clin Invest 52:60–72. https://doi.org/10.1172/JCI107174
Kostyuk VA, Kraemer T, Sies H, Schewe T (2003) Myeloperoxidase/nitrite-mediated lipid peroxidation of low-density lipoprotein as modulated by flavonoids. FEBS Lett 537:146–150. https://doi.org/10.1016/S0014-5793(03)00113-3
La Rocca G, Di Stefano A, Eleuteri E, Anzalone R, Magno F, Corrao S, Loria T, Martorana A, Di Gangi C, Colombo M, Sansone F, Patane F, Farina F, Rinaldi M, Cappello F, Giannuzzi P, Zummo G (2009) Oxidative stress induces myeloperoxidase expression in endocardial endothelial cells from patients with chronic heart failure. Basic Res Cardiol 104:307–320. https://doi. org/10.1007/s00395-008-0761-9
Langley-Evans SC (2000) Antioxidant potential of green and black tea determined using the ferric reducing power (FRAP) assay. Int J Food Sci Nutr 51:181–188. https://doi.org/10.1080/09637480050029683
Lazarević-Pasti T, Leskovac A, Vasić V (2015) Myeloperoxidase inhibitors as potential drugs. Curr Drug Metab 16:168–190. https://doi.org/10.2174/138920021603150812120640
Li Y, Ganesh T, Diebold BA, Zhu Y, McCoy JW, Smith SME, Sun A, Lambeth JD (2015) Thioxo-dihydroquinazolin-one compounds as novel inhibitors of myeloperoxidase. ACS Med Chem Lett 6:1047–1052. https://doi.org/10.1021/acsmedchemlett.5b00287
Lima CAM, Baumann P, Eap CB (2008) Paroxetine plasma concentrations in adult and elderly depressed patients. Rev Psiquiatr Rio Gd Sul 30:13–18. https://doi.org/10.1590/S0101-81082008000100006
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(3–26):469
Liu C, Desikan R, Ying Z, Gushchina L, Kampfrath T, Deiuliis J, Wang A, Xu X, Zhong J, Rao X, Sun Q, Maiseyeu A, Parthasarathy S, Rajagopalan S (2012) Effects of a novel pharmacologic inhibitor of myeloperoxidase in a mouse atherosclerosis model. PLoS One 7:e50767. https://doi. org/10.1371/journal.pone.0050767
Liu W-Q, Zhang Y-Z, Wu Y, Zhang J-J, Li T-B, Jiang T, Xiong X-M, Luo X-J, Ma Q-L, Peng J (2015) Myeloperoxidase-derived hypochlorous acid promotes ox-LDL-induced senescence of endothelial cells through a mechanism involving β-catenin signaling in hyperlipidemia. Biochem Biophys Res Commun 467:859–865. https://doi.org/10.1016/j.bbrc.2015.10.053
Loke WM, Proudfoot JM, Mckinley AJ, Needs PW, Kroon PA, Hodgson JM, Croft KD (2008) Quercetin and its in vivo metabolites inhibit neutrophil-mediated low-density lipoprotein oxidation. J Agric Food Chem 56:3609–3615. https://doi.org/10.1021/jf8003042
Lundblad RL (2005) Chemical reagents for protein modification, 3rd edn. CRC Press, Boca Raton
Maiocchi SL, Morris JC, Rees MD, Thomas SR (2017) Regulation of the nitric oxide oxidase activity of myeloperoxidase by pharmacological agents. Biochem Pharmacol 135:90–115. https://doi.org/10.1016/j.bcp.2017.03.016
Malik A, Batra JK (2012) Antimicrobial activity of human eosinophil granule proteins: involvement in host defence against pathogens. Crit Rev Microbiol 38:168–181. https://doi.org/10. 3109/1040841X.2011.645519
Malle E, Furtmüller PG, Sattler W, Obinger C (2007) Myeloperoxidase: a target for new drug development? Br J Pharmacol 152:838–854. https://doi.org/10.1038/sj.bjp.0707358
Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747. https://doi.org/10.1093/ajcn/79.5.727
Marquez LA, Huang JT, Dunford HB (1994) Spectral and kinetic studies on the formation of myeloperoxidase compounds I and II: roles of hydrogen peroxide and superoxide. Biochemistry 33:1447–1454. https://doi.org/10.1021/bi00172a022
Nastase M-V, Zeng-Brouwers J, Frey H, Hsieh LT-H, Poluzzi C, Beckmann J, Schroeder N, Pfeilschifter J, Lopez-Mosqueda J, Mersmann J, Ikeda F, Iozzo RV, Dikic I, Schaefer L (2016) An essential role for SHARPIN in the regulation of caspase 1 activity in sepsis. Am J Pathol 186:1206–1220. https://doi.org/10.1016/j.ajpath.2015.12.026
Nauseef WM (2014) Myeloperoxidase in human neutrophil host defence. Cell Microbiol 16:1146–1155. https://doi.org/10.1111/cmi.12312
Nauseef WM (2018) Biosynthesis of human myeloperoxidase. Arch Biochem Biophys 642:1–9. https://doi.org/10.1016/j.abb.2018.02.001
Nicholls SJ, Hazen SL (2008) Myeloperoxidase, modified lipoproteins, and atherogenesis. J Lipid Res 50:S346–S351. https://doi.org/10.1194/jlr.R800086-JLR200
Nicolussi A, Auer M, Sevcnikar B, Paumann-Page M, Pfanzagl V, Zámocký M, Hofbauer S, Furtmüller PG, Obinger C (2018) Posttranslational modification of heme in peroxidases – impact on structure and catalysis. Arch Biochem Biophys 643:14–23. https://doi.org/10.1016/j.abb.2018.02.008
Papież MA, Krzyściak W, Wąsik M (2015) Inhibition of myeloperoxidase activity have impact on the formation of DNA double-strand breaks induced by etoposide in HL-60 cell line. Folia Med Cracov 55:43–51
Pattison DI, Davies MJ (2004) Kinetic analysis of the reactions of hypobromous acid with protein components: implications for cellular damage and use of 3-bromotyrosine as a marker of oxidative stress. Biochemistry 43:4799–4809. https://doi.org/10.1021/bi035946a
Pattison DI, Davies MJ (2006) Reactions of myeloperoxidase-derived oxidants with biological substrates: gaining chemical insight into human inflammatory diseases. Curr Med Chem 13:3271–3290. https://doi.org/10.2174/092986706778773095
Paumann-Page M, Katz RS, Bellei M, Schwartz I, Edenhofer E, Sevcnikar B, Soudi M, Hofbauer S, Battistuzzi G, Furtmüller PG, Obinger C (2017) Pre-steady-state kinetics reveal the substrate specificity and mechanism of halide oxidation of truncated human Peroxidasin 1. J Biol Chem 292:4583–4592. https://doi.org/10.1074/jbc.M117.775213
Paumann-Page M, Tscheliessnig R, Sevcnikar B, Katz RS, Schwartz I, Hofbauer S, Pfanzagl V, Furtmüller PG, Obinger C (2020) Monomeric and homotrimeric solution structures of truncated human peroxidasin 1 variants. Biochim Biophys Acta Proteins Proteom 1868(1):140249. https://doi.org/10.1016/j.bbapap.2019.07.002
Poulos TL, Kraut J (1980) The stereochemistry of peroxidase catalysis. J Biol Chem 255:8199–8205
Ramos DR, García MV, Canle LM, Santaballa JA, Furtmüller PG, Obinger C (2008) Myeloperoxidase-catalyzed chlorination: the quest for the active species. J Inorg Biochem 102:1300–1311. https://doi.org/10.1016/j.jinorgbio.2008.01.003
Rasoanaivo P, Wright CW, Willcox ML, Gilbert B (2011) Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions. Malar J 10(Suppl 1): S4. https://doi.org/10.1186/1475-2875-10-S1-S4
Rtibi K, Jabri M-A, Selmi S, Sebai H, Amri M, El-Benna J, Marzouki L (2016) Ceratonia siliqua leaves exert a strong ROS-scavenging effect in human neutrophils, inhibit myeloperoxidase in vitro and protect against intestinal fluid and electrolytes secretion in rats. RSC Adv 6:65483–65493. https://doi.org/10.1039/C6RA11297H
Ruf J, Carayon P (2006) Structural and functional aspects of thyroid peroxidase. Arch Biochem Biophys 445:269–277. https://doi.org/10.1016/j.abb.2005.06.023
Ruggeri RB, Buckbinder L, Bagley SW, Carpino PA, Conn EL, Dowling MS, Fernando DP, Jiao W, Kung DW, Orr STM, Qi Y, Rocke BN, Smith A, Warmus JS, Zhang Y, Bowles D, Widlicka DW, Eng H, Ryder T, Sharma R, Wolford A, Okerberg C, Walters K, Maurer TS, Zhang Y, Bonin PD, Spath SN, Xing G, Hepworth D, Ahn K, Kalgutkar AS (2015) Discovery of 2-(6-(5-chloro-2-methoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2 h)-yl)acetamide (pf-06282999): a highly selective mechanism-based myeloperoxidase inhibitor for the treatment of cardiovascular diseases. J Med Chem 58:8513–8528. https://doi.org/10.1021/acs.jmedchem. 5b00963
Schewe T, Sies H (2005) Myeloperoxidase-induced lipid peroxidation of LDL in the presence of nitrite. Protection by cocoa flavanols. Biofactors 24:49–58. https://doi.org/10.1002/biof. 5520240106
Shao B, Heinecke JW (2009) HDL, lipid peroxidation, and atherosclerosis. J Lipid Res 50:599–601. https://doi.org/10.1194/jlr.E900001-JLR200
Shaw SA, Vokits BP, Dilger AK, Viet A, Clark CG, Abell LM, Locke GA, Duke G, Kopcho LM, Dongre A, Gao J, Krishnakumar A, Jusuf S, Khan J, Spronk SA, Basso MD, Zhao L, Cantor GH, Onorato JM, Wexler RR, Duclos F, Kick EK (2020) Discovery and structure activity relationships of 7-benzyl triazolopyridines as stable, selective, and reversible inhibitors of myeloperoxidase. Bioorg Med Chem 28:115723. https://doi.org/10.1016/j.bmc.2020.115723
Shepherd AM, McNay JL, Ludden TM, Lin MS, Musgrave GE (1981) Plasma concentration and acetylator phenotype determine response to oral hydralazine. Hypertension 3:580–585
Singh AK, Singh N, Sharma S, Singh SB, Kaur P, Bhushan A, Srinivasan A, Singh TP (2008) Crystal structure of lactoperoxidase at 2.4 Å resolution. J Mol Biol 376:1060–1075. https://doi. org/10.1016/j.jmb.2007.12.012
Skaff O, Pattison DI, Davies MJ (2007) Kinetics of hypobromous acid-mediated oxidation of lipid components and antioxidants. Chem Res Toxicol 20:1980–1988. https://doi.org/10.1021/tx7003097
Slimestad R, Fossen T, Vågen IM (2007) Onions: a source of unique dietary flavonoids. J Agric Food Chem 55:10067–10080. https://doi.org/10.1021/jf0712503
Smith GF (2011) Designing drugs to avoid toxicity. Prog Med Chem 50:1–47. https://doi.org/10. 1016/B978-0-12-381290-2.00001-X
Soubhye J, Prévost M, Van Antwerpen P, Zouaoui Boudjeltia K, Rousseau A, Furtmüller PG, Obinger C, Vanhaeverbeek M, Ducobu J, Néve J, Gelbcke M, Dufrasne FO (2010) Structure-based design, synthesis, and pharmacological evaluation of 3-(aminoalkyl)-5-fluoroindoles as myeloperoxidase inhibitors. J Med Chem 53:8747–8759. https://doi.org/10.1021/jm1009988
Soubhye J, Aldib I, Elfving B, Gelbcke M, Furtmüller PG, Podrecca M, Conotte R, Colet J-M, Rousseau A, Reye F, Sarakbi A, Vanhaeverbeek M, Kauffmann J-M, Obinger C, Nève J, Prévost M, Zouaoui Boudjeltia K, Dufrasne F, Van Antwerpen P (2013) Design, synthesis, and structure-activity relationship studies of novel 3-alkylindole derivatives as selective and highly potent myeloperoxidase inhibitors. J Med Chem 56:3943–3958. https://doi.org/10.1021/jm4001538
Soubhye J, Aldib I, Prévost M, Elfving B, Gelbcke M, Podrecca M, Conotte R, Colet J-M, Furtmüller PG, Delporte C, Rousseau A, Vanhaeverbeek M, Nève J, Obinger C, Zouaoui-Boudjeltia K, Van Antwerpen P, Dufrasne F (2014) Hybrid molecules inhibiting myeloperoxidase activity and serotonin reuptake: a possible new approach of major depressive disorders with inflammatory syndrome: hybrid MPO and 5-HT reuptake inhibitors. J Pharm Pharmacol 66:1122–1132. https://doi.org/10.1111/jphp.12236
Soubhye J, Aldib I, Delporte C, Prévost M, Dufrasne F, Antwerpen PV (2016a) Myeloperoxidase as a target for the treatment of inflammatory syndromes: mechanisms and structure activity relationships of inhibitors. Curr Med Chem 23:3975–4008
Soubhye J, Meyer F, Furtmüller P, Obinger C, Dufrasne F, Antwerpen PV (2016b) Characterization of chemical features of potent myeloperoxidase inhibitors. Future Med Chem 8:1163–1177. https://doi.org/10.4155/fmc-2016-0031
Soubhye J, Chikh Alard I, Aldib I, Prévost M, Gelbcke M, Tadrent S, Carvalho A, Furtmüller PG, Obinger C, Flemmig J, Meyer F, Rousseau A, Nève J, Mathieu V, Boudjeltia KZ, Dufrasne F, Van Antwerpen P (2017a) Discovery of novel potent reversible and irreversible myeloperoxidase inhibitors using virtual screening procedure. J Med Chem 60:6563–6586. https://doi.org/10.1021/acs.jmedchem.7b00285
Soubhye J, Gelbcke M, Van Antwerpen P, Dufrasne F, Boufadi MY, Nève J, Furtmüller PG, Obinger C, Zouaoui Boudjeltia K, Meyer F (2017b) From dynamic combinatorial chemistry to in vivo evaluation of reversible and irreversible myeloperoxidase inhibitors. ACS Med Chem Lett 8:206–210. https://doi.org/10.1021/acsmedchemlett.6b00417
Soudi M, Zamocky M, Jakopitsch C, Furtmüller PG, Obinger C (2012) Molecular evolution, structure, and function of peroxidasins. Chem Biodivers 9:1776–1793. https://doi.org/10. 1002/cbdv.201100438
Soudi M, Paumann-Page M, Delporte C, Pirker KF, Bellei M, Edenhofer E, Stadlmayr G, Battistuzzi G, Boudjeltia KZ, Furtmüller PG, Van Antwerpen P, Obinger C (2015) Multidomain human peroxidasin 1 is a highly glycosylated and stable homotrimeric high spin ferric peroxidase. J Biol Chem 290:10876–10890. https://doi.org/10.1074/jbc.M114.632273
Spalteholz H, Furtmüller PG, Jakopitsch C, Obinger C, Schewe T, Sies H, Arnhold J (2008) Kinetic evidence for rapid oxidation of ( )-epicatechin by human myeloperoxidase. Biochem Biophys Res Commun 371:810–813. https://doi.org/10.1016/j.bbrc.2008.04.139
Stamp LK, Turner R, Khalilova IS, Zhang M, Drake J, Forbes LV, Kettle AJ (2014) Myeloperoxidase and oxidation of uric acid in gout: implications for the clinical consequences of hyperuricaemia. Rheumatology 53:1958–1965. https://doi.org/10.1093/rheumatology/keu218
Stendahl O, Molin L, Dahlgren C (1978) The inhibition of polymorphonuclear leukocyte cytotoxicity by dapsone. A possible mechanism in the treatment of dermatitis herpetiformis. J Clin Invest 62:214–220. https://doi.org/10.1172/JCI109109
Tian R, Ding Y, Peng Y-Y, Lu N (2017) Inhibition of myeloperoxidase-and neutrophil-mediated hypochlorous acid formation in vitro and endothelial cell injury by ( )-epigallocatechin gallate. J Agric Food Chem 65:3198–3203. https://doi.org/10.1021/acs.jafc.7b00631
Tiden A-K, Sjogren T, Svensson M, Bernlind A, Senthilmohan R, Auchere F, Norman H, Markgren P-O, Gustavsson S, Schmidt S, Lundquist S, Forbes LV, Magon NJ, Paton LN, Jameson GNL, Eriksson H, Kettle AJ (2011) 2-thioxanthines are mechanism-based inactivators of myeloperoxidase that block oxidative stress during inflammation. J Biol Chem 286:37578–37589. https://doi.org/10.1074/jbc.M111.266981
Üllen A, Singewald E, Konya V, Fauler G, Reicher H, Nusshold C, Hammer A, Kratky D, Heinemann A, Holzer P, Malle E, Sattler W (2013) Myeloperoxidase-derived oxidants induce blood-brain barrier dysfunction in vitro and in vivo. PLoS One 8:e64034. https://doi.org/10. 1371/journal.pone.0064034
Van Antwerpen P, Slomianny MC, Boudjeltia KZ, Delporte C, Faid V, Calay D, Rousseau A, Moguilevsky N, Raes M, Vanhamme L, Furtmüller PG, Obinger C, Vanhaeverbeek M, Nève J, Michalski JC (2010) Glycosylation pattern of mature dimeric leukocyte and recombinant monomeric myeloperoxidase: glycosylation is required for optimal enzymatic activity. J Biol Chem 285:16351–16359. https://doi.org/10.1074/jbc.M109.089748
Winterbourn CC, Kettle AJ (2013) Redox reactions and microbial killing in the neutrophil phagosome. Antioxid Redox Signal 18:642–660. https://doi.org/10.1089/ars.2012.4827
Winterbourn CC, Kettle AJ, Hampton MB (2016) Reactive oxygen species and neutrophil function. Annu Rev Biochem 85:765–792. https://doi.org/10.1146/annurev-biochem-060815-014442
Ximenes VF, Paino IMM, de Faria-Oliveira OMM, da Fonseca LM, Brunetti IL (2005) Indole ring oxidation by activated leukocytes prevents the production of hypochlorous acid. Braz J Med Biol Res 38:1575–1583. https://doi.org/10.1590/S0100-879X2005001100003
Yu G, Liang Y, Huang Z, Jones DW, Pritchard KA, Zhang H (2016) Inhibition of myeloperoxidase oxidant production by N-acetyl lysyltyrosylcysteine amide reduces brain damage in a murine model of stroke. J Neuroinflammation 13:119. https://doi.org/10.1186/s12974-016-0583-x
Zámocký M, Jakopitsch C, Furtmüller PG, Dunand C, Obinger C (2008) The peroxidase-cyclooxygenase superfamily: reconstructed evolution of critical enzymes of the innate immune system. Proteins 71:589–605. https://doi.org/10.1002/prot.21950
Zámocký M, Hofbauer S, Schaffner I, Gasselhuber B, Nicolussi A, Soudi M, Pirker KF, Furtmüller PG, Obinger C (2015) Independent evolution of four heme peroxidase superfamilies. Arch Biochem Biophys 574:108–119. https://doi.org/10.1016/j.abb.2014.12.025
Zederbauer M, Furtmüller PG, Ganster B, Moguilevsky N, Obinger C (2007a) The vinyl-sulfonium bond in human myeloperoxidase: impact on compound I formation and reduction by halides and thiocyanate. Biochem Biophys Res Commun 356(2):450–456. https://doi.org/10.1016/j.bbrc. 2007.02.157
Zederbauer M, Furtmüller PG, Brogioni S, Jakopitsch C, Smulevich G, Obinger C (2007b) Heme to protein linkages in mammalian peroxidases: impact on spectroscopic, redox and catalytic properties. Nat Prod Rep 24:571–584. https://doi.org/10.1039/b604178g
Zhang H, Jing X, Shi Y, Xu H, Du J, Guan T, Weihrauch D, Jones DW, Wang W, Gourlay D, Oldham KT, Hillery CA, Pritchard KA (2013) N-acetyl lysyltyrosylcysteine amide inhibits myeloperoxidase, a novel tripeptide inhibitor. J Lipid Res 54:3016–3029. https://doi.org/10. 1194/jlr.M038273
Zhang H, Ray A, Miller NM, Hartwig D, Pritchard KA, Dittel BN (2016) Inhibition of myeloperoxidase at the peak of experimental autoimmune encephalomyelitis restores blood-brain barrier integrity and ameliorates disease severity. J Neurochem 136:826–836. https://doi. org/10.1111/jnc.13426
Zhao D, Tang W, Hao Z, Tao J (2015) Identification of flavonoids and expression of flavonoid biosynthetic genes in two coloured tree peony flowers. Biochem Biophys Res Commun 459:450–456. https://doi.org/10.1016/j.bbrc.2015.02.126