[en] Activation of the estrogen receptor alpha (ERa) is of prime importance for the development of hormone-dependent breast cancers. Hence, drugs able to impede the emergence of an active folding of ERa have been used for a long time as a first line therapeutic strategy. Aromatase inhibitors that block estradiol synthesis and / or antiestrogens that compete with hormone binding to the receptor are routinely prescribed. Unfortunately, emergence of tumor resistance almost invariably results from currently used antihormonal approaches. One may anticipate that a 'multi-target' strategy affecting key regulatory domains distinct from ligand binding pocket of ERa may help to circumvent this problem. To reach this goal, the synthesis of peptides that may specifically inhibit intra- or inter-molecular interactions has been proposed. This paper describes functional motifs potentially suitable for the design of such antagonists. Activity of available peptidic and non-peptidic mimics of these motifs is also reviewed.
Disciplines :
Oncology
Author, co-author :
Leclercq, Guy
Gallo, Dominique
Cossy, Janine
Laïos, Ioanna
Larsimont, Denis
Laurent, Guy ; Université de Mons > Faculté de Médecine et de Pharmacie > Histologie
Jacquot, Yves
Language :
English
Title :
Peptides targeting estrogen receptor alpha - Potential applications for breast cancer treatment
Morani A, Warner M, Gustafsson JA. Biological functions and clinical implications of oestrogen receptors alfa and beta in epithelial tissues. J Intern Med 2008; 264: 128-42.
Jordan VC. Tamoxifen (ICI46,474) as a targeted therapy to treat and prevent breast cancer. Br J Pharmacol 2006; 147 Suppl 1: S269-76.
Swaby RF, Sharma CG, Jordan VC. SERMs for the treatment and prevention of breast cancer. Rev Endocr Metab Disord 2007; 8: 229-39.
Journe F, Body JJ, Leclercq G, Laurent G. Hormone therapy for breast cancer, with an emphasis on the pure antiestrogen fulvestrant: mode of action, antitumor efficacy and effects on bone health. Expert Opin Drug Saf 2008; 7: 241-58.
Kekenes-Huskey PM, Muegge I, von RM, Gust R, Knapp EW. A molecular docking study of estrogenically active compounds with 1,2-diarylethane and 1,2-diarylethene pharmacophores. Bioorg Med Chem 2004; 12: 6527-37.
Pike AC, Brzozowski AM, Walton J, et al. Structural insights into the mode of action of a pure antiestrogen. Structure 2001; 9: 145-53.
Pike AC. Lessons learnt from structural studies of the oestrogen receptor. Best Pract Res Clin Endocrinol Metab 2006; 20: 1-14.
Shiau AK, Barstad D, Loria PM, et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 1998; 95: 927-37.
Klinge CM. Estrogen receptor interaction with co-activators and co-repressors. Steroids 2000; 65: 227-51.
Fox EM, Andrade J, Shupnik MA. Novel actions of estrogen to promote proliferation: integration of cytoplasmic and nuclear pathways. Steroids 2009; 74: 622-27.
Hall JM, McDonnell DP. Coregulators in nuclear estrogen receptor action: from concept to therapeutic targeting. Mol Interv 2005; 5: 343-57.
Leclercq G, Lacroix M, Laios I, Laurent G. Estrogen receptor alpha: impact of ligands on intracellular shuttling and turnover rate in breast cancer cells. Curr Cancer Drug Targets 2006; 6: 39-64.
Rosenfeld MG, Lunyak VV, Glass CK. Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signaldependent programs of transcriptional response. Genes Dev 2006; 20: 1405-28.
Jacquot Y, Leclercq G. The ligand binding domain of the human estrogen receptor alpha: mapping and functions. In «Estrogens: Production, Functions and Applications». NOVA 2009; 231-272.
Koide A, Zhao C, Naganuma M, et al. Identification of regions within the F domain of the human estrogen receptor alpha that are important for modulating transactivation and protein-protein interactions. Mol Endocrinol 2007; 21: 829-42.
Lonard DM, Nawaz Z, Smith CL, O'Malley BW. The 26S proteasome is required for estrogen receptor-alpha and coactivator turnover and for efficient estrogen receptor-alpha transactivation. Mol Cell 2000; 5: 939-48.
Gallo D, Leclercq G, Jacquot Y. The N-terminal part of the ligandbinding domain of the human estrogen receptor alpha: A new target for estrogen disruptors. Medical Chemistry Research Progress. Nova Science Publishers. 2008.
Zwart W, de LR, Rondaij M, Neefjes J, Mancini MA, Michalides R. The hinge region of the human estrogen receptor determines functional synergy between AF-1 and AF-2 in the quantitative response to estradiol and tamoxifen. J Cell Sci 2010; 123: 1253-61.
Brzozowski AM, Pike AC, Dauter Z, et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 1997; 389: 753-8.
Levin ER. Minireview: Extranuclear Steroid Receptors: Roles in Modulation of Cell Functions. Mol Endocrinol 2011; 25: 377-74.
Mendelsohn ME, Karas RH. Rapid progress for non-nuclear estrogen receptor signaling. J Clin Invest 2010; 120: 2277-9.
Freeman BC, Yamamoto KR. Continuous recycling: a mechanism for modulatory signal transduction. Trends Biochem Sci 2001; 26: 285-90.
Jankevics H, Prummer M, Izewska P, Pick H, Leufgen K, Vogel H. Diffusion-time distribution analysis reveals characteristic liganddependent interaction patterns of nuclear receptors in living cells. Biochemistry 2005; 44: 11676-83.
Maruvada P, Baumann CT, Hager GL, Yen PM. Dynamic shuttling and intranuclear mobility of nuclear hormone receptors. J Biol Chem 2003; 278: 12425-32.
Stenoien DL, Patel K, Mancini MG, et al. FRAP reveals that mobility of oestrogen receptor-alpha is ligand- and proteasomedependent. Nat Cell Biol 2001; 3: 15-23.
Acconcia F, Ascenzi P, Fabozzi G, Visca P, Marino M. Spalmitoylation modulates human estrogen receptor-alpha functions. Biochem Biophys Res Commun 2004; 316: 878-83.
Pedram A, Razandi M, Sainson RC, Kim JK, Hughes CC, Levin ER. A conserved mechanism for steroid receptor translocation to the plasma membrane. J Biol Chem 2007; 282: 22278-88.
Guiochon-Mantel A, Delabre K, Lescop P, Milgrom E. Nuclear localization signals also mediate the outward movement of proteins from the nucleus. Proc Natl Acad Sci USA 1994; 91: 7179-83.
Guiochon-Mantel A, Delabre K, Lescop P, Milgrom E. The Ernst Schering Poster Award. Intracellular traffic of steroid hormone receptors. J Steroid Biochem Mol Biol 1996; 56: 3-9.
Pemberton LF, Paschal BM. Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic 2005; 6: 187-98.
Ylikomi T, Bocquel MT, Berry M, Gronemeyer H, Chambon P. Cooperation of proto-signals for nuclear accumulation of estrogen and progesterone receptors. EMBO J 1992; 11: 3681-94.
Lombardi M, Castoria G, Migliaccio A, et al. Hormone-dependent nuclear export of estradiol receptor and DNA synthesis in breast cancer cells. J Cell Biol 2008; 182: 327-40.
Zheng FF, Wu RC, Smith CL, O'Malley BW. Rapid estrogeninduced phosphorylation of the SRC-3 coactivator occurs in an extranuclear complex containing estrogen receptor. Mol Cell Biol 2005; 25: 8273-84.
Nonclercq D, Journe F, Laios I, et al. Effect of nuclear export inhibition on estrogen receptor regulation in breast cancer cells. J Mol Endocrinol 2007; 39: 105-18.
Stenoien DL, Mancini MG, Patel K, Allegretto EA, Smith CL, Mancini MA. Subnuclear trafficking of estrogen receptor-alpha and steroid receptor coactivator-1. Mol Endocrinol 2000; 14: 518-34.
Berry NB, Fan M, Nephew KP. Estrogen receptor-alpha hingeregion lysines 302 and 303 regulate receptor degradation by the proteasome. Mol Endocrinol 2008; 22: 1535-51.
Borras M, Leclercq G. Modulatory effect of nonesterified fatty acids on structure and binding characteristics of estrogen receptor from MCF-7 human breast cancer cells. J Recept Res 1992; 12: 463-84.
Laios I, Journe F, Laurent G, et al. Mechanisms governing the accumulation of estrogen receptor alpha in MCF-7 breast cancer cells treated with hydroxytamoxifen and related antiestrogens. J Steroid Biochem Mol Biol 2003; 87: 207-21.
Wijayaratne AL, McDonnell DP. The human estrogen receptoralpha is a ubiquitinated protein whose stability is affected differentially by agonists, antagonists, and selective estrogen receptor modulators. J Biol Chem 2001; 276: 35684-92.
O'Lone R, Frith MC, Karlsson EK, Hansen U. Genomic targets of nuclear estrogen receptors. Mol Endocrinol 2004; 18: 1859-75.
Manavathi B, Singh K, Kumar R. MTA family of coregulators in nuclear receptor biology and pathology. Nucl Recept Signal 2007; 5: e010.
Kumar R, Wang RA, Mazumdar A, et al. A naturally occurring MTA1 variant sequesters oestrogen receptor-alpha in the cytoplasm. Nature 2002; 418: 654-7.
Metivier R, Penot G, Hubner MR, Reid G, Brand H, Kos M et al. Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 2003; 115: 751-63.
Reid G, Hubner MR, Metivier R, et al. Cyclic, proteasomemediated turnover of unliganded and liganded ERalpha on responsive promoters is an integral feature of estrogen signaling. Mol Cell 2003; 11: 695-707.
Agouridas V, Laios I, Cleeren A, et al. Loss of antagonistic activity of tamoxifen by replacement of one N-methyl of its side chain by fluorinated residues. Bioorg Med Chem 2006; 147531-7538.
Martin MB, Reiter R, Pham T, et al. Estrogen-like activity of metals in MCF-7 breast cancer cells. Endocrinology 2003; 144: 2425-36.
Carascossa S, Dudek P, Cenni B, Briand PA, Picard D. CARM1 mediates the ligand-independent and tamoxifen-resistant activation of the estrogen receptor alpha by cAMP. Genes Dev 2010; 24: 708-19.
Tsai HW, Katzenellenbogen JA, Katzenellenbogen BS, Shupnik MA. Protein kinase A activation of estrogen receptor alpha transcription does not require proteasome activity and protects the receptor from ligand-mediated degradation. Endocrinology 2004; 145: 2730-8.
Maaroufi Y, Quivy J, Trivedi S, Gilot N, Leclercq G. 4-iodotamoxifen aziridine, a new affinity labeling agent for the rapid detection of estrogen receptor isoforms. J Steroid Biochem Mol Biol 1998; 67: 95-104.
Michalides R, Griekspoor A, Balkenende A, et al. Tamoxifen resistance by a conformational arrest of the estrogen receptor alpha after PKA activation in breast cancer. Cancer Cell 2004; 5: 597-605.
Journe F, Dumon JC, Kheddoumi N, et al. Extracellular calcium downregulates estrogen receptor alpha and increases its transcriptional activity through calcium-sensing receptor in breast cancer cells. Bone 2004; 35: 479-88.
Maaroufi Y, Ben HA, Leclercq G. Decrease of hormone binding capacity of estrogen receptor by calcium. J Recept Signal Transduct Res 1997; 17: 833-53.
Puca GA, Nola E, Sica V, Bresciani F. Estrogen binding proteins of calf uterus. Molecular and functional characterization of the receptor transforming factor: A Ca2+-activated protease. J Biol Chem 1977; 252: 1358-66.
Hall JM, Couse JF, Korach KS. The multifaceted mechanisms of estradiol and estrogen receptor signaling. J Biol Chem 2001; 276: 36869-72.
Picard D, Bunone G, Liu JW, Donze O. Steroid-independent activation of steroid receptors in mammalian and yeast cells and in breast cancer. Biochem Soc Trans 1997; 25: 597-602.
Shupnik MA. Crosstalk between steroid receptors and the c-Srcreceptor tyrosine kinase pathways: implications for cell proliferation. Oncogene 2004; 23: 7979-89.
Fan P, Wang J, Santen RJ, Yue W. Long-term treatment with tamoxifen facilitates translocation of estrogen receptor alpha out of the nucleus and enhances its interaction with EGFR in MCF-7 breast cancer cells. Cancer Res 2007; 67: 1352-60.
Song RX, Chen Y, Zhang Z, et al. Estrogen utilization of IGF-1-R and EGF-R to signal in breast cancer cells. J Steroid Biochem Mol Biol 2010; 118: 219-30.
Zhou D, Quach KM, Yang C, Lee SY, Pohajdak B, Chen S. PNRC: a proline-rich nuclear receptor coregulatory protein that modulates transcriptional activation of multiple nuclear receptors including orphan receptors SF1 (steroidogenic factor 1) and ERRalpha1 (estrogen related receptor alpha-1). Mol Endocrinol 2000; 14: 986-98.
Zhou D, Chen B, Ye JJ, Chen S. A novel crosstalk mechanism between nuclear receptor-mediated and growth factor/Rasmediated pathways through PNRC-Grb2 interaction. Oncogene 2004; 23: 5394-404.
Zhou D, Chen S. PNRC2 is a 16 kDa coactivator that interacts with nuclear receptors through an SH3-binding motif. Nucleic Acids Res 2001; 29: 3939-48.
Jacquot Y, Gallo D, Leclercq G. Estrogen receptor alpha--identification by a modeling approach of a potential polyproline II recognizing domain within the AF-2 region of the receptor that would play a role of prime importance in its mechanism of action. J Steroid Biochem Mol Biol 2007; 104: 1-10.
Razandi M, Pedram A, Merchenthaler I, Greene GL, Levin ER. Plasma membrane estrogen receptors exist and functions as dimers. Mol Endocrinol 2004; 18: 2854-65.
Powell E, Wang Y, Shapiro DJ, Xu W. Differential requirements of Hsp90 and DNA for the formation of estrogen receptor homodimers and heterodimers. J Biol Chem 2010; 285: 16125-34.
Tanenbaum DM, Wang Y, Williams SP, Sigler PB. Crystallographic comparison of the estrogen and progesterone receptor's ligand binding domains. Proc Natl Acad Sci USA 1998; 95: 5998-6003.
Yudt MR, Koide S. Preventing estrogen receptor action with dimer-interface peptides. Steroids 2001; 66: 549-58.
Weis KE, Ekena K, Thomas JA, Lazennec G, Katzenellenbogen BS. Constitutively active human estrogen receptors containing amino acid substitutions for tyrosine 537 in the receptor protein. Mol Endocrinol 1996; 10: 1388-98.
Arnold SF, Notides AC. An antiestrogen: a phosphotyrosyl peptide that blocks dimerization of the human estrogen receptor. Proc Natl Acad Sci USA 1995; 92: 7475-9.
Yudt MR, Vorojeikina D, Zhong L, et al. Function of estrogen receptor tyrosine 537 in hormone binding, DNA binding, and transactivation. Biochemistry 1999; 38: 14146-56.
Varricchio L, Migliaccio A, Castoria G, et al. Inhibition of estradiol receptor/Src association and cell growth by an estradiol receptor alpha tyrosine-phosphorylated peptide. Mol Cancer Res 2007; 5: 1213-21.
Papoutsi Z, Zhao C, Putnik M, Gustafsson JA, hlman-Wright K. Binding of estrogen receptor alpha/beta heterodimers to chromatin in MCF-7 cells. J Mol Endocrinol 2009; 43: 65-72.
Murphy LC, Watson PH. Is oestrogen receptor-beta a predictor of endocrine therapy responsiveness in human breast cancer? Endocr Relat Cancer 2006; 13: 327-34.
Paruthiyil S, Parmar H, Kerekatte V, Cunha GR, Firestone GL, Leitman DC. Estrogen receptor beta inhibits human breast cancer cell proliferation and tumor formation by causing a G2 cell cycle arrest. Cancer Res 2004; 64: 423-8.
Matthews J, Gustafsson JA. Estrogen signaling: a subtle balance between ER alpha and ER beta. Mol Interv 2003; 3: 281-92.
Powell E, Huang SX, XU Y, et al. Identification and characterization of a novel estrogenic ligand actinopolymorphol A. Biochem Pharmacol 2010; 80: 1221-9.
Huang SX, Powell E, Rajski SR, et al. Discovery and total synthesis of a new estrogen receptor heterodimerizing actinopolymorphol A from Actinopolymorpha rutilus. Org Lett 2010; 12: 3525-7.
Forman BM, Goode E, Chen J, et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 1995; 81: 687-93.
Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 1999; 3: 543-53.
Modica S, Gadaleta RM, Moschetta A. Deciphering the nuclear bile acid receptor FXR paradigm. Nucl Recept Signal 2010; 8: 1-28.
Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev 2009; 89: 147-91.
Journe F, Durbecq V, Chaboteaux C, et al. Association between farnesoid X receptor expression and cell proliferation in estrogen receptor-positive luminal-like breast cancer from postmenopausal patients. Breast Cancer Res Treat 2009; 115: 523-35.
Kounalakis N, Lau S, Darling D, Palomares M, Senthil M, Lai L. A pilot study to compare FXR expression in normal and malignant tissue in receptor-positive early-stage breast cancer. J Clin Oncol 2009; 27: e14645.
Kounalakis N, Lau S, Darling D, Smith D, Palomares M, Lai L. The nuclear receptor FXR links metabolism with breast cancer. Cancer Res 2009; 69.
Journe F, Laurent G, Chaboteaux C, et al. Farnesol, a mevalonate pathway intermediate, stimulates MCF-7 breast cancer cell growth through farnesoid-X-receptor-mediated estrogen receptor activation. Breast Cancer Res Treat 2008; 107: 49-61.
Ohtake F, Fujii-Kuriyama Y, Kato S. AhR acts as an E3 ubiquitin ligase to modulate steroid receptor functions. Biochem Pharmacol 2009; 77: 474-84.
Ohtake F, Takeyama K, Matsumoto T, et al. Modulation of oestrogen receptor signalling by association with the activated dioxin receptor. Nature 2003; 423: 545-50.
Eberharter A, Becker PB. Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep 2002; 3: 224-9.
de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 2003; 370: 737-49.
Subramanian K, Jia D, Kapoor-Vazirani P, et al. Regulation of estrogen receptor alpha by the SET7 lysine methyltransferase. Mol Cell 2008; 30: 336-47.
Wang C, Fu M, Angeletti RH, et al. Direct acetylation of the estrogen receptor alpha hinge region by p300 regulates transactivation and hormone sensitivity. J Biol Chem 2001; 276: 18375-83.
Atsriku C, Britton DJ, Held JM, et al. Systematic mapping of posttranslational modifications in human estrogen receptor-alpha with emphasis on novel phosphorylation sites. Mol Cell Proteomics 2009; 8(3): 467-80.
Lannigan DA. Estrogen receptor phosphorylation. Steroids 2003; 68: 1-9.
Balasenthil S, Barnes CJ, Rayala SK, Kumar R. Estrogen receptor activation at serine 305 is sufficient to upregulate cyclin D1 in breast cancer cells. FEBS Lett 2004; 567: 243-47.
Li L, Li Z, Howley PM, Sacks DB. E6AP and calmodulin reciprocally regulate estrogen receptor stability. J Biol Chem 2006; 281: 1978-85.
Gallo D, Jacquot Y, Laurent G, Leclercq G. Calmodulin, a regulatory partner of the estrogen receptor alpha in breast cancer cells. Mol Cell Endocrinol 2008; 291: 20-6.
Bourgoin-Voillard S, Zins EL, Fournier F, et al. Stereochemical effects during [M-H]- dissociations of epimeric 11-OH-17betaestradiols and distant electronic effects of substituents at C(11) position on gas phase acidity. J Am Soc Mass Spectrom 2009; 20: 2318-33.
Gallo D, Jacquemotte F, Cleeren A, et al. Calmodulin-independent, agonistic properties of a peptide containing the calmodulin binding site of estrogen receptor alpha. Mol Cell Endocrinol 2007; 268: 37-49.
Giordano C, Cui Y, Barone I, et al. Growth factor-induced resistance to tamoxifen is associated with a mutation of estrogen receptor alpha and its phosphorylation at serine 305. Breast Cancer Res Treat 2010; 119: 71-85.
Garcia Pedrero JM, Del RB, Martinez-Campa C, Muramatsu M, Lazo PS, Ramos S. Calmodulin is a selective modulator of estrogen receptors. Mol Endocrinol 2002; 16: 947-60.
Peczuh MW, Hamilton AD. Peptide and protein recognition by designed molecules. Chem Rev 2000; 100: 2479-94.
Shoemaker BA, Panchenko AR. Deciphering protein-protein interactions. Part I. Experimental techniques and databases. PLoS Comput Biol 2007; 3: e42.
Shoemaker BA, Panchenko AR. Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners. PLoS Comput Biol 2007; 3: e43.
Lafont V, Schaefer M, Stote RH, Altschuh D, Dejaegere A. Protein-protein recognition and interaction hot spots in an antigenantibody complex: free energy decomposition identifies efficient amino acids. Proteins 2007; 67: 418-34.
Dalgarno DC, Botfield MC, Rickles RJ. SH3 domains and drug design: ligands, structure, and biological function. Biopolymers 1997; 43: 383-400.
Macias MJ, Wiesner S, Sudol M. WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Lett 2002; 513: 30-7.
Chang C, Norris JD, Gron H, et al. Dissection of the LXXLL nuclear receptor-coactivator interaction motif using combinatorial peptide libraries: discovery of peptide antagonists of estrogen receptors alpha and beta. Mol Cell Biol 1999; 19: 8226-39.
Heery DM, Kalkhoven E, Hoare S, Parker MG. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 1997; 387: 733-6.
Heery DM, Hoare S, Hussain S, Parker MG, Sheppard H. Core LXXLL motif sequences in CREB-binding protein, SRC1, and RIP140 define affinity and selectivity for steroid and retinoid receptors. J Biol Chem 2001; 276: 6695-702.
Gee AC, Carlson KE, Martini PG, Katzenellenbogen BS, Katzenellenbogen JA. Coactivator peptides have a differential stabilizing effect on the binding of estrogens and antiestrogens with the estrogen receptor. Mol Endocrinol 1999; 13: 1912-23.
Bentrem D, Fox JE, Pearce ST, et al. Distinct molecular conformations of the estrogen receptor alpha complex exploited by environmental estrogens. Cancer Res 2003; 63: 7490-6.
Celik L, Davey J, Lund D, Schiott B. Exploring interactions of endocrine-disrupting compounds with different conformations of the human estrogen receptor alpha ligand binding domain: a molecular docking study. Chem Res Toxicol 2008; 21: 2195-206.
Hurth KM, Nilges MJ, Carlson KE, Tamrazi A, Belford RL, Katzenellenbogen JA. Ligand-induced changes in estrogen receptor conformation as measured by site-directed spin labeling. Biochemistry 2004; 43: 1891-907.
Kong EH, Pike AC, Hubbard RE. Structure and mechanism of the oestrogen receptor. Biochem Soc Trans 2003; 31: 56-9.
Spyrakis F, Cozzini P. How computational methods try to disclose the estrogen receptor secrecy--modeling the flexibility. Curr Med Chem 2009; 16: 2987-3027.
Sumbayev VV, Bonefeld-Jorgensen EC, Wind T, Andreasen PA. A novel pesticide-induced conformational state of the oestrogen receptor ligand-binding domain, detected by conformation-specific peptide binding. FEBS Lett 2005; 579: 541-8.
Ozers MS, Ervin KM, Steffen CL, et al. Analysis of liganddependent recruitment of coactivator peptides to estrogen receptor using fluorescence polarization. Mol Endocrinol 2005; 19: 25-34.
Schwartz JA, Brooks SC. Changes in the structure of the ligand or substitutions to AF2 residues in the estrogen receptor make independent contributions to coactivator sensitivity by SRC-1. J Steroid Biochem Mol Biol 1998; 67: 223-32.
Carlson KE, Choi I, Gee A, Katzenellenbogen BS, Katzenellenbogen JA. Altered ligand binding properties and enhanced stability of a constitutively active estrogen receptor: evidence that an open pocket conformation is required for ligand interaction. Biochemistry 1997; 36: 14897-905.
Le GP, Montano MM, Schodin DJ, Katzenellenbogen BS. Phosphorylation of the human estrogen receptor. Identification of hormone-regulated sites and examination of their influence on transcriptional activity. J Biol Chem 1994; 269: 4458-66.
Zhang T, Dong XC, Chen MB. Recognition of LXXLL by ligand binding domain of the Farnesoid X receptor in molecular dynamics simulation. J Chem Inf Model 2006; 46: 2623-30.
Aasland R, Abrams C, Ampe C, et al. Normalization of nomenclature for peptide motifs as ligands of modular protein domains. FEBS Lett 2002; 513: 141-4.
McDonnell DP, Chang CY, Norris JD. Development of peptide antagonists that target estrogen receptor-cofactor interactions. J Steroid Biochem Mol Biol 2000; 74: 327-35.
Savkur RS, Burris TP. The coactivator LXXLL nuclear receptor recognition motif. J Pept Res 2004; 63: 207-12.
Wu Y, Delerive P, Chin WW, Burris TP. Requirement of helix 1 and the AF-2 domain of the thyroid hormone receptor for coactivation by PGC-1. J Biol Chem 2002; 277: 8898-905.
Wu Y, Chin WW, Wang Y, Burris TP. Ligand and coactivator identity determines the requirement of the charge clamp for coactivation of the peroxisome proliferator-activated receptor gamma. J Biol Chem 2003; 278: 8637-44.
Bramlett KS, Burris TP. Effects of selective estrogen receptor modulators (SERMs) on coactivator nuclear receptor (NR) box binding to estrogen receptors. Mol Genet Metab 2002; 76: 225-33.
Dong DD, Jewell CM, Bienstock RJ, Cidlowski JA. Functional analysis of the LXXLL motifs of the human glucocorticoid receptor: association with altered ligand affinity. J Steroid Biochem Mol Biol 2006; 101: 106-17.
Kumar R, Thompson EB. The structure of the nuclear hormone receptors. Steroids 1999; 64: 310-9.
Gao X, Loggie BW, Nawaz Z. The roles of sex steroid receptor coregulators in cancer. Mol Cancer 2002; 1: 7.
Heldring N, Pawson T, McDonnell D, Treuter E, Gustafsson JA, Pike AC. Structural insights into corepressor recognition by antagonist-bound estrogen receptors. J Biol Chem 2007; 282: 10449-55.
Kim SH, Gunther JR, Katzenellenbogen JA. Monitoring a coordinated exchange process in a four-component biological interaction system: development of a time-resolved terbium-based onedonor/three-acceptor multicolor FRET system. J Am Chem Soc 2010; 132: 4685-92.
Zhao C, Koide A, Abrams J, et al. Mutation of Leu-536 in human estrogen receptor-alpha alters the coupling between ligand binding, transcription activation, and receptor conformation. J Biol Chem 2003; 278: 27278-86.
Zhong L, Skafar DF. Mutations of tyrosine 537 in the human estrogen receptor-alpha selectively alter the receptor's affinity for estradiol and the kinetics of the interaction. Biochemistry 2002; 41: 4209-17.
Stenoien DL, Nye AC, Mancini MG, et al. Ligand-mediated assembly and real-time cellular dynamics of estrogen receptor alphacoactivator complexes in living cells. Mol Cell Biol 2001; 21: 4404-12.
Xu HE, Stanley TB, Montana VG, Lambert MH, Shearer BG, Cobb JE et al. Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPARalpha. Nature 2002; 415: 813-7.
Koide A, Abbatiello S, Rothgery L, Koide S. Probing protein conformational changes in living cells by using designer binding proteins: application to the estrogen receptor. Proc Natl Acad Sci USA 2002; 99: 1253-8.
McInerney EM, Rose DW, Flynn SE, et al. Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional activation. Genes Dev 1998; 12: 3357-3368.
Wong CW, Komm B, Cheskis BJ. Structure-function evaluation of ER alpha and beta interplay with SRC family coactivators. ER selective ligands. Biochemistry 2001; 40: 6756-65.
Kurebayashi J, Otsuki T, Kunisue H, Tanaka K, Yamamoto S, Sonoo H. Expression levels of estrogen receptor-alpha, estrogen receptor-beta, coactivators, and corepressors in breast cancer. Clin Cancer Res 2000; 6: 512-8.
Warnmark A, Treuter E, Gustafsson JA, Hubbard RE, Brzozowski AM, Pike AC. Interaction of transcriptional intermediary factor 2 nuclear receptor box peptides with the coactivator binding site of estrogen receptor alpha. J Biol Chem 2002; 277: 21862-8.
Nettles KW, Greene GL. Nuclear receptor ligands and cofactor recruitment: is there a coactivator on deck? Mol Cell 2003; 11: 850-1.
Varlakhanova N, Snyder C, Jose S, Hahm JB, Privalsky ML. Estrogen receptors recruit SMRT and N-CoR corepressors through newly recognized contacts between the corepressor N terminus and the receptor DNA binding domain. Mol Cell Biol 2010; 30: 1434-45.
Darimont BD, Wagner RL, Apriletti JW, et al. Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev 1998; 12: 3343-56.
Hall JM, Chang CY, McDonnell DP. Development of peptide antagonists that target estrogen receptor beta-coactivator interactions. Mol Endocrinol 2000; 14: 2010-23.
Klein FA, Atkinson RA, Potier N, Moras D, Cavarelli J. Biochemical and NMR mapping of the interface between CREB-binding protein and ligand binding domains of nuclear receptor: beyond the LXXLL motif. J Biol Chem 2005; 280: 5682-92.
Needham M, Raines S, McPheat J, et al. Differential interaction of steroid hormone receptors with LXXLL motifs in SRC-1a depends on residues flanking the motif. J Steroid Biochem Mol Biol 2000; 72: 35-46.
Plevin MJ, Mills MM, Ikura M. The LxxLL motif: a multifunctional binding sequence in transcriptional regulation. Trends Biochem Sci 2005; 30: 66-9.
Dubbink HJ, Hersmus R, Pike AC, et al. Androgen receptor ligandbinding domain interaction and nuclear receptor specificity of FXXLF and LXXLL motifs as determined by L/F swapping. Mol Endocrinol 2006; 20: 1742-55.
Geistlinger TR, Guy RK. Novel selective inhibitors of the interaction of individual nuclear hormone receptors with a mutually shared steroid receptor coactivator 2. J Am Chem Soc 2003; 125: 6852-3.
He B, Wilson EM. Electrostatic modulation in steroid receptor recruitment of LXXLL and FXXLF motifs. Mol Cell Biol 2003; 23: 2135-50.
Hur E, Pfaff SJ, Payne ES, Gron H, Buehrer BM, Fletterick RJ. Recognition and accommodation at the androgen receptor coactivator binding interface. PLoS Biol 2004; 2: E274.
Kussie PH, Gorina S, Marechal V, et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 1996; 274: 948-53.
Uesugi M, Nyanguile O, Lu H, Levine AJ, Verdine GL. Induced alpha helix in the VP16 activation domain upon binding to a human TAF. Science 1997; 277: 1310-13.
Westin S, Kurokawa R, Nolte RT, et al. Interactions controlling the assembly of nuclear-receptor heterodimers and co-activators. Nature 1998; 395: 199-202.
Chen H, Lin RJ, Xie W, Wilpitz D, Evans RM. Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell 1999; 98: 675-86.
Litterst CM, Pfitzner E. An LXXLL motif in the transactivation domain of STAT6 mediates recruitment of NCoA-1/SRC-1. J Biol Chem 2002; 277: 36052-60.
Radhakrishnan I, Perez-Alvarado GC, Parker D, Dyson HJ, Montminy MR, Wright PE. Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator: coactivator interactions. Cell 1997; 91: 741-52.
Zhang J, Kalkum M, Yamamura S, Chait BT, Roeder RG. E protein silencing by the leukemogenic AML1-ETO fusion protein. Science 2004; 305: 1286-9.
Tomkowicz B, Singh SP, Lai D, et al. Mutational analysis reveals an essential role for the LXXLL motif in the transformation function of the human herpesvirus-8 oncoprotein, kaposin. DNA Cell Biol 2005; 24: 10-20.
Greenfield N, Vijayanathan V, Thomas TJ, Gallo MA, Thomas T. Increase in the stability and helical content of estrogen receptor alpha in the presence of the estrogen response element: analysis by circular dichroism spectroscopy. Biochemistry 2001; 40: 6646-52.
Hall JM, McDonnell DP, Korach KS. Allosteric regulation of estrogen receptor structure, function, and coactivator recruitment by different estrogen response elements. Mol Endocrinol 2002; 16: 469-86.
Norris JD, Fan D, Stallcup MR, McDonnell DP. Enhancement of estrogen receptor transcriptional activity by the coactivator GRIP-1 highlights the role of activation function 2 in determining estrogen receptor pharmacology. J Biol Chem 1998; 273: 6679-88.
Norris JD, Paige LA, Christensen DJ, et al. Peptide antagonists of the human estrogen receptor. Science 1999; 285: 744-6.
Fuchs SM, Raines RT. Polyarginine as a multifunctional fusion tag. Protein Sci 2005; 14: 1538-44.
Carraz M, Zwart W, Phan T, Michalides R, Brunsveld L. Perturbation of estrogen receptor alpha localization with synthetic nonaarginine LXXLL-peptide coactivator binding inhibitors. Chem Biol 2009; 16: 702-11.
Singh RR, Kaluarachchi K, Chen M, et al. Solution structure and antiestrogenic activity of the unique C-terminal, NR-box motifcontaining region of MTA1s. J Biol Chem 2006; 281: 25612-21.
Leduc AM, Trent JO, Wittliff JL, et al. Helix-stabilized cyclic peptides as selective inhibitors of steroid receptor-coactivator interactions. Proc Natl Acad Sci USA 2003; 100: 11273-8.
Galande AK, Bramlett KS, Burris TP, Wittliff JL, Spatola AF. Thioether side chain cyclization for helical peptide formation: inhibitors of estrogen receptor-coactivator interactions. J Pept Res 2004; 63: 297-302.
Geistlinger TR, McReynolds AC, Guy RK. Ligand-selective inhibition of the interaction of steroid receptor coactivators and estrogen receptor isoforms. Chem Biol 2004; 11: 273-81.
Fletcher S, Hamilton AD. Targeting protein-protein interactions by rational design: mimicry of protein surfaces. J R Soc Interface 2006; 3: 215-33.
Fry DC. Protein-protein interactions as targets for small molecule drug discovery. Biopolymers 2006; 84: 535-52.
Becerril J, Hamilton AD. Helix mimetics as inhibitors of the interaction of the estrogen receptor with coactivator peptides. Angew Chem Int Ed Engl 2007; 46: 4471-3.
Gunther JR, Moore TW, Collins ML, Katzenellenbogen JA. Amphipathic benzenes are designed inhibitors of the estrogen receptor alpha/steroid receptor coactivator interaction. ACS Chem Biol 2008; 3: 282-6.
Gunther JR, Parent AA, Katzenellenbogen JA. Alternative inhibition of androgen receptor signaling: peptidomimetic pyrimidines as direct androgen receptor/coactivator disruptors. ACS Chem Biol 2009; 4: 435-40.
LaFrate AL, Gunther JR, Carlson KE, Katzenellenbogen JA. Synthesis and biological evaluation of guanylhydrazone coactivator binding inhibitors for the estrogen receptor. Bioorg Med Chem 2008; 16: 10075-84.
Rodriguez AL, Tamrazi A, Collins ML, Katzenellenbogen JA. Design, synthesis, and in vitro biological evaluation of small molecule inhibitors of estrogen receptor alpha coactivator binding. J Med Chem 2004; 47: 600-11.
Shao D, Berrodin TJ, Manas E, et al. Identification of novel estrogen receptor alpha antagonists. J Steroid Biochem Mol Biol 2004; 88: 351-60.
Williams AB, Weiser PT, Hanson RN, Gunther JR, Katzenellenbogen JA. Synthesis of biphenyl proteomimetics as estrogen receptoralpha coactivator binding inhibitors. Org Lett 2009; 11: 5370-3.
Zhou HB, Collins ML, Gunther JR, Comninos JS, Katzenellenbogen JA. Bicyclo[2.2.2]octanes: close structural mimics of the nuclear receptor-binding motif of steroid receptor coactivators. Bioorg Med Chem Lett 2007; 17: 4118-22.
Wang Y, Chirgadze NY, Briggs SL, Khan S, Jensen EV, Burris TP. A second binding site for hydroxytamoxifen within the coactivatorbinding groove of estrogen receptor beta. Proc Natl Acad Sci USA 2006; 103: 9908-911.
Kojetin DJ, Burris TP, Jensen EV, Khan SA. Implications of the binding of tamoxifen to the coactivator recognition site of the estrogen receptor. Endocr Relat Cancer 2008; 15: 851-70.
Hu X, Lazar MA. The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature 1999; 402: 93-6.
Heldring N, Nilsson M, Buehrer B, Treuter E, Gustafsson JA. Identification of tamoxifen-induced coregulator interaction surfaces within the ligand-binding domain of estrogen receptors. Mol Cell Biol 2004; 24: 3445-59.
Huang HJ, Norris JD, McDonnell DP. Identification of a negative regulatory surface within estrogen receptor alpha provides evidence in support of a role for corepressors in regulating cellular responses to agonists and antagonists. Mol Endocrinol 2002; 16: 1778-92.
Paige LA, Christensen DJ, Gron H, et al. Estrogen receptor (ER) modulators each induce distinct conformational changes in ER alpha and ER beta. Proc Natl Acad Sci USA 1999; 96: 3999-4004.
Karmakar S, Gao T, Pace MC, Oesterreich S, Smith CL. Cooperative activation of cyclin D1 and progesterone receptor gene expression by the SRC-3 coactivator and SMRT corepressor. Mol Endocrinol 2010; 24: 1187-202.
Peterson TJ, Karmakar S, Pace MC, Gao T, Smith CL. The silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) corepressor is required for full estrogen receptor alpha transcriptional activity. Mol Cell Biol 2007; 27: 5933-48.
Acconcia F, Ascenzi P, Bocedi A, et al. Palmitoylation-dependent estrogen receptor alpha membrane localization: regulation by 17beta-estradiol. Mol Biol Cell 2005; 16: 231-7.
Gallo D, Jacquot Y, Cleeren A, et al. Molecular basis of agonistic activity of ER alpha 7p, a synthetic peptide corresponding to a sequence located at the N-terminal part of the estrogen receptor alpha ligand binding domain. Lett Drug Des Discov 2007; 4: 346-55.
Barone I, Iacopetta D, Covington KR, et al. Phosphorylation of the mutant K303R estrogen receptor alpha at serine 305 affects aromatase inhibitor sensitivity. Oncogene 2010; 29: 2404-14.
Kapitan J, Gallo D, Goasdoue N, et al. Identification of a human estrogen receptor alpha-derived antiestrogenic peptide that adopts a polyproline II conformation. J Pept Sci 2009; 15: 455-64.
Koide A, Bailey CW, Huang X, Koide S. The fibronectin type III domain as a scaffold for novel binding proteins. J Mol Biol 1998; 284: 1141-51.
Koide A, Koide S. Monobodies: antibody mimics based on the scaffold of the fibronectin type III domain. Methods Mol Biol 2007; 352: 95-109.
Ball LJ, Kuhne R, Schneider-Mergener J, Oschkinat H. Recognition of proline-rich motifs by protein-protein-interaction domains. Angew Chem Int Ed Engl 2005; 44(19): 2852-69.
Humeny A, Bokenkamp D, Thole HH. The HDQVH-motif in domain E of the estradiol receptor alpha is responsible for zincbinding and zinc-induced hormone release. Mol Cell Endocrinol 1999; 153: 71-8.
Maaroufi Y, Cleeren A, Leclercq G. Inhibition of estradiol binding to its receptor by the cupric ion. J Biol Inorg Chem 1998; 3: 508-14.
Bennett JA, Zhu S, Pagano-Mirarchi A, Kellom TA, Jacobson HI. Alpha-fetoprotein derived from a human hepatoma prevents growth of estrogen-dependent human breast cancer xenografts. Clin Cancer Res 1998; 4: 2877-84.
Mizejewski GJ, Vonnegut M, Jacobson HI. Estradiol-activated alpha-fetoprotein suppresses the uterotropic response to estrogens. Proc Natl Acad Sci USA 1983; 80: 2733-7.
Abelev GI. Alpha-fetoprotein in ontogenesis and its association with malignant tumors. Adv Cancer Res 1971; 14: 295-58.
Jacobson HI, Lemanski N, Narendran A, Agarwal A, Bennett JA, Andersen TT. Hormones of pregnancy, alpha-feto protein, and reduction of breast cancer risk. Adv Exp Med Biol 2008; 617: 477-84.
Richardson BE, Hulka BS, Peck JL, et al. Levels of maternal serum alpha-fetoprotein (AFP) in pregnant women and subsequent breast cancer risk. Am J Epidemiol 1998; 148: 719-27.
Sonnenschein C, Ucci AA, Soto AM. Growth inhibition of estrogen-sensitive rat mammary tumors. Effect of an alpha-fetoproteinsecreting hepatoma. J Natl Cancer Inst 1980; 64: 1147-1152.
Couinaud C, Schwarzmann V, Ceoara B, Orengo P, Fitterer R. [Malignant hepatoma with amenorrhea and galactorrhea. Disappearance of the endocrine syndrome following right hepatectomy]. Ann Chir 1973; 27: 151-6.
Bennett JA, Mesfin FB, Andersen TT, Gierthy JF, Jacobson HI. A peptide derived from alpha-fetoprotein prevents the growth of estrogen-dependent human breast cancers sensitive and resistant to tamoxifen. Proc Natl Acad Sci USA 2002; 99: 2211-5.
Andersen TT, Georgekutty J, Defreest LA, et al. An alphafetoprotein-derived peptide reduces the uterine hyperplasia and increases the antitumour effect of tamoxifen. Br J Cancer 2007; 97: 327-33.
Bennett JA, DeFreest L, Anaka I, et al. AFPep: an anti-breast cancer peptide that is orally active. Breast Cancer Res Treat 2006; 98: 133-41.
Kirschner KN, Lexa KW, Salisburg AM, et al. Computational design and experimental discovery of an antiestrogenic peptide derived from alpha-fetoprotein. J Am Chem Soc 2007; 129: 6263-8.
Naval J, Villacampa MJ, Goguel AF, Uriel J. Cell-type-specific receptors for alpha-fetoprotein in a mouse T-lymphoma cell line. Proc Natl Acad Sci USA 1985; 82: 3301-5.
Villacampa MJ, Moro R, Naval J, Failly-Crepin C, Lampreave F, Uriel J. Alpha-fetoprotein receptors in a human breast cancer cell line. Biochem Biophys Res Commun 1984; 122: 1322-7.
Parikh RR, Gildener-Leapman N, Narendran A, et al. Prevention of N-methyl-N-nitrosourea-induced breast cancer by alpha-fetoprotein (AFP)-derived peptide, a peptide derived from the active site of AFP. Clin Cancer Res 2005; 11: 8512-20.
Thomas RS, Sarwar N, Phoenix F, Coombes RC, Ali S. Phosphorylation at serines 104 and 106 by Erk1/2 MAPK is important for estrogen receptor-alpha activity. J Mol Endocrinol 2008; 40: 173-84.
Defreest LA, Mesfin FB, Joseph L, et al. Synthetic peptide derived from alpha-fetoprotein inhibits growth of human breast cancer: investigation of the pharmacophore and synthesis optimization. J Pept Res 2004; 63: 409-19.
Joseph LC, Bennett JA, Kirschner KN, et al. Antiestrogenic and anticancer activities of peptides derived from the active site of alpha-fetoprotein. J Pept Sci 2009; 15: 319-25.
Kornyei JL, Vertes Z, Oszter A, Kovacs S, Vertes M. Opioid peptides inhibit the estradiol-induced proliferation of cultured rat uterine cells. Eur J Pharmacol 1997; 336: 65-70.
Kornyei JL, Vertes Z, Oszter A, Kovacs KA, Rao CV, Vertes M. Opioid peptides inhibit the action of oestradiol on human myometrial cells in culture. Mol Hum Reprod 1999; 5: 565-72.
Ordog T, Vertes Z, Vertes M. Inhibition of oestradiol-induced DNA synthesis by opioid peptides in the rat uterus. Life Sci 1992; 51: 1187-96.
Vertes Z, Kornyei JL, Kovacs S, Vertes M. Role of opioid peptides in the regulation of DNA synthesis in immature rat uterus. Eur J Pharmacol 1995; 291: 115-20.
Oszter A, Vertes Z, Torocsik B, Kornyei JL, Kovacs KA, Vertes M. Antiestrogenic effect of opioid peptides in rat uterus. J Steroid Biochem Mol Biol 2000; 74: 25-32.
Kong EH, Heldring N, Gustafsson JA, Treuter E, Hubbard RE, Pike AC. Delineation of a unique protein-protein interaction site on the surface of the estrogen receptor. Proc Natl Acad Sci USA 2005; 102: 3593-8.
Huang KC. The Pharmacology of Chinese Herbs. CRC Press, Boca Raton, FL 1993.
Morita H, Yun YS, Takeya K, Itokawa H, Shirota O. A cyclic heptapeptide from Vaccaria segetalis. Phytochemistry 1996; 42: 439-41.
Morita H, Yun YS, Takeya K, Itokawa H, Shirota O. Thionation of segetalins A and B, cyclic peptides with estrogen-like activity from seeds of Vaccaria segetalis. Bioorg Med Chem 1997; 5: 631-6.
Morita H, Eda M, Iizuka T, et al. Structure of a new cyclic nonapeptide, segetalin F, and vasorelaxant activity of segetalins from Vaccaria segetalis. Bioorg Med Chem Lett 2006; 16: 4458-61.
Venkatesh N, Zaltsman Y, Somjen D, et al. A synthetic peptide with estrogen-like activity derived from a phage-display peptide library. Peptides 2002; 23: 573-80.
Metivier R, Reid G, Gannon F. Transcription in four dimensions: nuclear receptor-directed initiation of gene expression. EMBO Rep 2006; 7: 161-7.
Onate SA, Tsai SY, Tsai MJ, O'Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 1995; 270: 1354-7.
Laios I, Journe F, Nonclercq D, et al. Role of the proteasome in the regulation of estrogen receptor alpha turnover and function in MCF-7 breast carcinoma cells. J Steroid Biochem Mol Biol 2005; 94: 347-59.
Nawaz Z, Lonard DM, Dennis AP, Smith CL, O'Malley BW. Proteasome-dependent degradation of the human estrogen receptor. Proc Natl Acad Sci USA 1999; 96: 1858-62.
Jensen EV, Cheng G, Palmieri C, et al. Estrogen receptors and proliferation markers in primary and recurrent breast cancer. Proc Natl Acad Sci USA 2001; 98: 15197-202.
Landis-Piwowar KR, Milacic V, Chen D, et al. The proteasome as a potential target for novel anticancer drugs and chemosensitizers. Drug Resist Updat 2006; 9: 263-73.
Teicher BA, Ara G, Herbst R, Palombella VJ, Adams J. The proteasome inhibitor PS-341 in cancer therapy. Clin Cancer Res 1999; 5: 2638-45.
Orlowski RZ. The ubiquitin proteasome pathway from bench to bedside. Hematology Am Soc Hematol Educ Program 2005: pp 220-25.
Pham LV, Tamayo AT, Yoshimura LC, Lo P, Ford RJ. Inhibition of constitutive NF-kappa B activation in mantle cell lymphoma B cells leads to induction of cell cycle arrest and apoptosis. J Immunol 2003; 171: 88-95.
Richardson PG, Barlogie B, Berenson J, et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 2003; 348: 2609-17.
Yang CH, Gonzalez-Angulo AM, Reuben JM, et al. Bortezomib (VELCADE) in metastatic breast cancer: pharmacodynamics, biological effects, and prediction of clinical benefits. Ann Oncol 2006; 17: 813-7.
Callige M, Richard-Foy H. Ligand-induced estrogen receptor alpha degradation by the proteasome: new actors? Nucl Recept Signal 2006; 4: e004.
Sakamoto KM, Kim KB, Verma R, et al. Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation. Mol Cell Proteomics 2003; 2: 1350-8.
Cyrus K, Wehenkel M, Choi EY, Lee H, Swanson H, Kim KB. Jostling for Position: Optimizing Linker Location in the Design of Estrogen Receptor-Targeting PROTACs. ChemMedChem 2010; 5: 979-85.
Rodriguez-Gonzalez A, Cyrus K, Salcius M, et al. Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer. Oncogene 2008; 27: 7201-11.
Zhang D, Baek SH, Ho A, Lee H, Jeong YS, Kim K. Targeted degradation of proteins by small molecules: a novel tool for functional proteomics. Comb Chem High Throughput Screen 2004; 7: 689-97.
Griekspoor A, Zwart W, Neefjes J, Michalides R. Visualizing the action of steroid hormone receptors in living cells. Nucl Recept Signal 2007; 5: e003.
Weatherman RV, Chang CY, Clegg NJ, et al. Ligand-selective interactions of ER detected in living cells by fluorescence resonance energy transfer. Mol Endocrinol 2002; 16: 487-96.
Koterba KL, Rowan BG. Measuring ligand-dependent and ligandindependent interactions between nuclear receptors and associated proteins using Bioluminescence Resonance Energy Transfer (BRET). Nucl Recept Signal 2006; 4: e021.
Paulmurugan R, Gambhir SS. An intramolecular folding sensor for imaging estrogen receptor-ligand interactions. Proc Natl Acad Sci USA 2006; 103: 15883-8.
Bourgoin-Voillard S, Gallo D, Laios I, et al. Capacity of type I and II ligands to confer to estrogen receptor alpha an appropriate conformation for the recruitment of coactivators containing a LxxLL motif-Relationship with the regulation of receptor level and EREdependent transcription in MCF-7 cells. Biochem Pharmacol 2010; 79: 746-57.
Fechner P, Proll F, Carlquist M, Proll G. An advanced biosensor for the prediction of estrogenic effects of endocrine-disrupting chemicals on the estrogen receptor alpha. Anal Bioanal Chem 2009; 393: 1579-85.
Tamrazi A, Carlson KE, Rodriguez AL, Katzenellenbogen JA. Coactivator proteins as determinants of estrogen receptor structure and function: spectroscopic evidence for a novel coactivatorstabilized receptor conformation. Mol Endocrinol 2005; 19: 1516-28.
Kim SB, Umezawa Y, Kanno KA, Tao H. An integrated-moleculeformat multicolor probe for monitoring multiple activities of a bioactive small molecule. ACS Chem Biol 2008; 3: 359-72.
Kim SB, Sato M, Tao H. Molecular tension-indexed bioluminescent probe for determining protein-protein interactions. Bioconjug Chem 2009; 20: 2324-30.
Gallo D, Haddad I, Laurent G, et al. Regulatory function of the P295-T311 motif of the estrogen receptor alpha - does proteasomal degradation of the receptor induce emergence of peptides implicated in estrogenic responses? Nucl Recept Signal 2008; 6: e007.
Long X, Fan M, Nephew KP. Estrogen receptor-alpha-interacting cytokeratins potentiate the antiestrogenic activity of fulvestrant. Cancer Biol Ther 2010; 9: 389-96.
Horigome T, Ogata F, Golding TS, Korach KS. Estradiolstimulated proteolytic cleavage of the estrogen receptor in mouse uterus. Endocrinology 1988; 123: 2540-8.
Leclercq G. Molecular forms of the estrogen receptor in breast cancer. J Steroid Biochem Mol Biol 2002; 80: 259-72.
Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graph 1996; 14: 33.