gas sensor; metal oxide; Semiconductor; stability; Data collection; Electronic information; Environmental Monitoring; Exhaled breaths; Gas detection; Gas-sensors; Information age; Long term stability; Metal oxide semiconductor gas sensors; Stability criterions; Instrumentation; Electrical and Electronic Engineering
Abstract :
[en] Sensor stability is defined as the ability to maintain a relatively stable and repeatable signal over a sufficient period. Long-term stability for gas sensors is an essential capability for carrying out long-term data collection of human exhaled breath, environmental monitoring and other gas detection in the modern electronic information age. This article reviews the research advances on the stability of metal oxide semiconductor gas sensors in the past five years. The impact of structure, environment, toxicity and sensor array on the sensor stability are discussed. Then, the improvement schemes of existing materials and structure design are summarized. The achievements of structure doping, humidity, anti-poisoning and photoactivation are overviewed. Finally, the great significance of elucidating the sensing mechanism and carrying out the life acceleration test for future research and development is pointed out.
Research center :
CRIM - Ingénierie des matériaux
Disciplines :
Materials science & engineering
Author, co-author :
Chai, Hongfeng; College of Mechanical Engineering, Yangzhou University, Yangzhou, China
Zheng, Zichen; College of Mechanical Engineering, Yangzhou University, Yangzhou, China
Liu, Kewei; College of Mechanical Engineering, Yangzhou University, Yangzhou, China
Xu, Jinyong; College of Mechanical Engineering, Yangzhou University, Yangzhou, China
Wu, Kaidi; College of Mechanical Engineering, Yangzhou University, Yangzhou, China
Luo, Yifan ; Université de Mons - UMONS > Faculté Polytechnique > Service de Science des Matériaux ; College of Mechanical Engineering, Yangzhou University, Yangzhou, China
Liao, Hanlin; ICB UMR 6303, CNRS, University Bourgogne Franche-Comté, University of Technology of Belfort-Montbéliard (UTBM), Belfort, France
Research Institute for Materials Science and Engineering
Funders :
National Key Research and Development Program of China National Natural Science Foundation of China Practice Innovation Plan of Graduate Education Innovation Project in Jiangsu Province Outstanding Youth Foundation of Jiangsu Province of China
D. J. Foreman and S. A. McLuckey, "Recent developments in gasphase Ion/Ion reactions for analytical mass spectrometry," Anal. Chem., vol. 92, no. 1, pp. 252-266, Jan. 2020, doi: 10.1021/acs. analchem.9b05014.
R. Baron and J. Saffell, "Amperometric gas sensors as a low cost emerging technology platform for air quality monitoring applications: A review," ACS Sensors, vol. 2, no. 11, pp. 1553-1566, 2017, doi: 10.1021/acssensors.7b00620.
T. R. Fadel, R. K. Bansal, and H. O. Gupta, "Toward the responsible development and commercialization of sensor nanotechnologies," ACS Sensors, vol. 1, no. 3, pp. 207-216, 2016, doi: 10.1021/ acssensors.5b00279.
L. Xu, H.-W. Liang, Y. Yang, and S.-H. Yu, "Stability and reactivity: Positive and negative aspects for nanoparticle processing," Chem. Rev., vol. 118, no. 7, pp. 3209-3250, Apr. 2018, doi: 10.1021/acs.chemrev.7b00208.
A. C. Romain and J. Nicolas, "Long term stability of metal oxidebased gas sensors for e-nose environmental applications: An overview," Sens. Actuators B, Chem., vol. 146, no. 2, pp. 502-506, Apr. 2010, doi: 10.1016/j.snb.2009.12.027.
G. Korotcenkov and B. K. Cho, "Engineering approaches to improvement of conductometric gas sensor parameters-Part 2: Decrease of dissipated (consumable) power and improvement stability and reliability," Sens. Actuators B, Chem., vol. 198, pp. 316-341, Jul. 2014, doi: 10.1016/j.snb.2014.03.069.
L. Zhu and W. Zeng, "Room-temperature gas sensing of ZnO-based gas sensor: A review," Sens. Actuators A, Phys., vol. 267, pp. 242-261, Nov. 2017, doi: 10.1016/j.sna.2017.10.021.
R. Kumar, O. Al-Dossary, G. Kumar, and A. Umar, "Zinc oxide nanostructures for NO2 gas-sensor applications: A review," Nano-Micro Lett., vol. 7, no. 2, pp. 97-120, 2015, doi: 10.1007/s40820-014-0023-3.
G. Korotcenkov and B. K. Cho, "The role of grain size on the thermal instability of nanostructured metal oxides used in gas sensor applications and approaches for grain-size stabilization," Prog. Crystal Growth Characterization Mater., vol. 58, no. 4, pp. 167-208, Dec. 2012, doi: 10.1016/j.pcrysgrow.2012.07.001.
D. E. Motaung et al., "Correlating the magnetism and gas sensing properties of Mn-doped ZnO films enhanced by UV irradiation," RSC Adv., vol. 6, no. 31, pp. 26227-26238, 2016, doi: 10.1039/C5RA27154A.
X.-T. Yin et al., "Nanostructured tungsten trioxide prepared at various growth temperatures for sensing applications," J. Alloys Compounds, vol. 825, Jun. 2020, Art. no. 154105, doi: 10.1016/j.jallcom.2020.154105.
G.-L. Tan, D. Tang, D. Dastan, A. Jafari, J. P. B. Silva, and X.-T. Yin, "Effect of heat treatment on electrical and surface properties of tungsten oxide thin films grown by HFCVD technique," Mater. Sci. Semicond. Process., vol. 122, Feb. 2021, Art. no. 105506, doi: 10.1016/j.mssp.2020.105506.
H. E. Rudel, M. K. M. Lane, C. L. Muhich, and J. B. Zimmerman, "Toward informed design of nanomaterials: A mechanistic analysis of structure-property-function relationships for faceted nanoscale metal oxides," ACS Nano, vol. 14, no. 12, pp. 16472-16501, Dec. 2020, doi: 10.1021/acsnano.0c08356.
S. Vajda and M. G. White, "Catalysis applications of size-selected cluster deposition," ACS Catalysis, vol. 5, no. 12, pp. 7152-7176, Dec. 2015, doi: 10.1021/acscatal.5b01816.
D. Degler, U. Weimar, and N. Barsan, "Current understanding of the fundamental mechanisms of doped and loaded semiconducting metal-oxide-based gas sensing materials," ACS Sensors, vol. 4, no. 9, pp. 2228-2249, Sep. 2019, doi: 10.1021/acssensors.9b00975.
S. A. Sergiienko, O. L. Kukla, P. S. Yaremov, V. N. Solomakha, and O. V. Shvets, "The influence of preparation conditions and doping on the physicochemical and sensor properties of mesoporous tin oxide," Sens. Actuators B, Chem., vol. 177, pp. 643-653, Feb. 2013, doi: 10.1016/j.snb.2012.11.008.
A. M. Abbas, H. A. Naif, and E. S. Hassan, "Silver loading tin oxide nanostructure for gas sensing application," Brazilian J. Phys., vol. 51, no. 3, pp. 618-624, Jun. 2021, doi: 10.1007/s13538-021-00872-0.
Y. Ran et al., "Sm-doped SnO2 nanoparticles synthesized via solvothermal method as a high-performance formaldehyde sensing material for gas sensors," J. Mater. Sci., Mater. Electron., vol. 32, no. 7, pp. 8249-8264, Apr. 2021, doi: 10.1007/s10854-020-05216-3.
G. Korotcenkov and S. D. Han, "(Cu, Fe, Co, or Ni)-doped tin dioxide films deposited by spray pyrolysis: Doping influence on thermal stability of the film structure," Mater. Chem. Phys., vol. 113, nos. 2-3, pp. 756-763, Feb. 2009, doi: 10.1016/j.matchemphys.2008.08.031.
S. Benedetti, N. Nilius, S. Valeri, S. Tosoni, E. Albanese, and G. Pacchioni, "Dopant-induced diffusion processes at metal-oxide interfaces studied for iron-and chromium-doped MgO/Mo(001) model systems," J. Phys. Chem. C, vol. 120, no. 25, pp. 13604-13609, Jun. 2016, doi: 10.1021/acs.jpcc.6b04182.
C. H. Bartholomew, "Mechanisms of catalyst deactivation," Appl. Catal. A, Gen., vol. 212, nos. 1-2, pp. 17-60, Apr. 2001, doi: 10.1016/S0926-860X(00)00843-7.
S. J. Gentry and A. Jones, "Poisoning and inhibition of catalytic oxidations: I. The effect of silicone vapour on the gas-phase oxidations of methane, propene, carbon monoxide and hydrogen over platinum and palladium catalysts," J. Chem. Technol. Biotechnol., vol. 28, no. 11, pp. 727-732, Nov. 1978, doi: 10.1002/jctb.5700281106.
V. Palmisano et al., "Selectivity and resistance to poisons of commercial hydrogen sensors," Int. J. Hydrogen Energy, vol. 40, no. 35, pp. 11740-11747, 2015, doi: 10.1016/j.ijhydene.2015.02.120.
M. Zhang, T. Ning, P. Sun, D. Zhang, Y. Yan, and Z. Li, "Poisoning mechanisms of mn-containing additives on the performance of TiO2 based lambda oxygen sensor," Sens. Actuators B, Chem., vol. 267, pp. 565-569, Aug. 2018, doi: 10.1016/j.snb.2018.04.006.
C.-O. Park and S. A. Akbar, "Ceramics for chemical sensing," J. Mater. Sci., vol. 38, no. 23, pp. 4611-4637, Dec. 2003, doi: 10.1023/A:1027402430153.
V. M. Chernyshev et al., "Pd and Pt catalyst poisoning in the study of reaction mechanisms: What does the mercury test mean for catalysis?" ACS Catal., vol. 9, no. 4, pp. 2984-2995, Apr. 2019, doi: 10.1021/acscatal.8b03683.
R. Ahmad and A. K. Singh, "Pt-poisoning-free efficient CO oxidation on Pt3Co supported on MgO(100): An ab initio study," ACS Catal., vol. 5, no. 3, pp. 1826-1832, Mar. 2015, doi: 10.1021/cs501911r.
N. Liu et al., "Tunable NH4F-assisted synthesis of 3D porous In2O3 microcubes for outstanding NO2 gas-sensing performance: Fast equilibrium at high temperature and resistant to humidity at room temperature," ACS Appl. Mater. Interface, vol. 13, no. 12, pp. 14355-14364, Mar. 2021, doi: 10.1021/acsami.0c22987.
H.-Y. Li, C.-S. Lee, D. H. Kim, and J.-H. Lee, "Flexible roomtemperature NH3 sensor for ultrasensitive, selective, and humidityindependent gas detection," ACS Appl. Mater. Interface, vol. 10, no. 33, pp. 27858-27867, Aug. 2018, doi: 10.1021/acsami.8b09169.
A. Sanger et al., "Morphology-controlled aluminum-doped zinc oxide nanofibers for highly sensitive NO2 sensors with full recovery at room temperature," Adv. Sci., vol. 5, no. 9, Sep. 2018, Art. no. 1800816, doi: 10.1002/advs.201800816.
K. Hwang et al., "Microporous elastomer filter coated with metal organic frameworks for improved selectivity and stability of metal oxide gas sensors," ACS Appl. Mater. Interface, vol. 12, no. 11, pp. 13338-13347, Mar. 2020, doi: 10.1021/acsami.0c00143.
S. Jeong, J. Kim, and J. Lee, "Rational design of semiconductorbased chemiresistors and their libraries for next-generation artificial olfaction," Adv. Mater., vol. 32, no. 51, Dec. 2020, Art. no. 2002075, doi: 10.1002/adma.202002075.
D. Degler, B. Junker, F. Allmendinger, U. Weimar, and N. Barsan, "Investigations on the temperature-dependent interaction of water vapor with tin dioxide and its implications on gas sensing," ACS Sensors, vol. 5, no. 10, pp. 3207-3216, Oct. 2020, doi: 10.1021/ acssensors.0c01493.
X.-H. Ma, H.-Y. Li, S.-H. Kweon, S.-Y. Jeong, J.-H. Lee, and S. Nahm, "Highly sensitive and selective PbTiO3 gas sensors with negligible humidity interference in ambient atmosphere," ACS Appl. Mater. Interface, vol. 11, no. 5, pp. 5240-5246, Feb. 2019, doi: 10.1021/acsami.8b18428.
C.-H. Kwak, T.-H. Kim, S.-Y. Jeong, J.-W. Yoon, J.-S. Kim, and J.-H. Lee, "Humidity-independent oxide semiconductor chemiresistors using terbium-doped SnO2 Yolk-Shell spheres for real-time breath analysis," ACS Appl. Mater. Interface, vol. 10, no. 22, pp. 18886-18894, Jun. 2018, doi: 10.1021/acsami.8b04245.
S. Wicker, M. Guiltat, U. Weimar, A. Hémeryck, and N. Barsan, "Ambient humidity influence on CO detection with SnO2 gas sensing Materials. A combined DRIFTS/DFT investigation," J. Phys. Chem. C, vol. 121, no. 45, pp. 25064-25073, Nov. 2017, doi: 10.1021/acs.jpcc.7b06253.
J. H. Bang et al., "Proton-beam engineered surface-point defects for highly sensitive and reliable NO2 sensing under humid environments," J. Hazardous Mater., vol. 416, Aug. 2021, Art. no. 125841, doi: 10.1016/j.jhazmat.2021.125841.
M. Yan et al., "Humidity compensation based on power-law response for MOS sensors to VOCs," Sens. Actuators B, Chem., vol. 334, May 2021, Art. no. 129601, doi: 10.1016/j.snb.2021.129601.
D. Degler, S. Wicker, U. Weimar, and N. Barsan, "Identifying the active oxygen species in SnO2 based gas sensing materials: An operando IR spectrsocopy study," J. Phys. Chem. C, vol. 119, no. 21, pp. 11792-11799, May 2015, doi: 10.1021/acs.jpcc.5b04082.
G. Neri, "First fifty years of chemoresistive gas sensors," Chemosensors, vol. 3, no. 1, pp. 1-20, 2015, doi: 10.3390/chemosensors3010001.
A. Staerz, C. Berthold, T. Russ, S. Wicker, U. Weimar, and N. Barsan, "The oxidizing effect of humidity on WO3 based sensors," Sens. Actuators B, Chem., vol. 237, pp. 54-58, Dec. 2016, doi: 10.1016/j.snb.2016.06.072.
K. Suematsu, N. Ma, K. Watanabe, M. Yuasa, T. Kida, and K. Shimanoe, "Effect of humid aging on the oxygen adsorption in SnO2 gas sensors," Sensors, vol. 18, no. 1, p. 254, Jan. 2018, doi: 10. 3390/s18010254.
A. Rao et al., "In situ localized growth of ordered metal oxide hollow sphere array on microheater platform for sensitive, ultra-fast gas sensing," ACS Appl. Mater. Interface, vol. 9, no. 3, pp. 2634-2641, Jan. 2017, doi: 10.1021/acsami.6b12677.
Y. Chen, M. Li, W. Yan, X. Zhuang, K. W. Ng, and X. Cheng, "Sensitive and low-power metal oxide gas sensors with a low-cost microelectromechanical heater," ACS Omega, vol. 6, no. 2, pp. 1216-1222, Jan. 2021, doi: 10.1021/acsomega.0c04340.
J. Puigcorbé et al., "Thermal and mechanical analysis of micromachined gas sensors," J. Micromech. Microeng., vol. 13, no. 5, pp. 548-556, 2003, doi: 10.1088/0960-1317/13/5/304.
S. P. Lee, "Electrodes for semiconductor gas sensors," Sensors, vol. 17, no. 4, p. 683, 2017, doi: 10.3390/s17040683.
Q.-Y. Wang, Y.-C. Tong, P.-J. Yan, X.-J. Xu, and Z. Li, "Attachment of CO to a (6, 6) CNT with a Sc adsorbate atom," Structural Chem., vol. 30, no. 1, pp. 399-408, Feb. 2019, doi: 10.1007/s11224-018-1202-5.
C. Zhang, G. Liu, X. Geng, K. Wu, and M. Debliquy, "Metal oxide semiconductors with highly concentrated oxygen vacancies for gas sensing materials: A review," Sens. Actuators A, Phys., vol. 309, Jul. 2020, Art. no. 112026, doi: 10.1016/j.sna.2020.112026.
R. A. Andrievski, "Review of thermal stability of nanomaterials," J. Mater. Sci., vol. 49, no. 4, pp. 1449-1460, Feb. 2014, doi: 10.1007/s10853-013-7836-1.
R. A. Andrievski, "Stability of nanostructured materials," J. Mater. Sci., vol. 38, no. 7, pp. 1367-1375, 2003, doi: 10.1023/A:1022988706296.
L. Wu et al., "Interface energies of nanocrystalline doped ceria: Effects of manganese segregation," J. Phys. Chem. C, vol. 119, no. 49, pp. 27855-27864, Dec. 2015, doi: 10.1021/acs.jpcc.5b09255.
D. M. Tobaldi et al., "Cu-TiO2 hybrid nanoparticles exhibiting tunable photochromic behavior," J. Phys. Chem. C, vol. 119, no. 41, pp. 23658-23668, Oct. 2015, doi: 10.1021/acs.jpcc.5b07160.
C. Wildfire, E. Ciftyürek, K. Sabolsky, and E. M. Sabolsky, "Investigation of doped-gadolinium zirconate nanomaterials for high-temperature hydrogen sensor applications," J. Mater. Sci., vol. 49, no. 14, pp. 4735-4750, Jul. 2014, doi: 10.1007/s10853-014-8173-8.
C. Zhang, A. Boudiba, M.-G. Olivier, R. Snyders, and M. Debliquy, "Magnetron sputtered tungsten oxide films activated by dip-coated platinum for ppm-level hydrogen detection," Thin Solid Films, vol. 520, no. 9, pp. 3679-3683, Feb. 2012, doi: 10.1016/j.tsf.2011.12.085.
A. Nanda, V. Singh, R. K. Jha, J. Sinha, S. Avasthi, and N. Bhat, "Growth-temperature dependent unpassivated oxygen bonds determine the gas sensing abilities of chemical vapor deposition-grown CuO thin films," ACS Appl. Mater. Interfaces, vol. 13, no. 18, pp. 2193-21943, May 2021, doi: 10.1021/acsami.1c01085.
M. Amarnath, A. Heiner, and K. Gurunathan, "Size controlled V2O5-WO3 nano-islands coated polypyrrole matrix: A unique nanocomposite for effective room temperature ammonia detection," Sens. Actuators A, Phys., vol. 313, Oct. 2020, Art. no. 112211, doi: 10.1016/j.sna.2020.112211.
E. Martinelli, D. Polese, A. Catini, A. D'Amico, and C. D. Natale, "Self-adapted temperature modulation in metal-oxide semiconductor gas sensors," Sens. Actuators B, Chem., vol. 161, no. 1, pp. 534-541, 2012, doi: 10.1016/j.snb.2011.10.072.
O. Djedidi, M. A. Djeziri, N. Morati, J.-L. Seguin, M. Bendahan, and T. Contaret, "Accurate detection and discrimination of pollutant gases using a temperature modulated MOX sensor combined with feature extraction and support vector classification," Sens. Actuators B, Chem., vol. 339, Jul. 2021, Art. no. 129817, doi: 10.1016/j.snb.2021.129817.
A. V. Shaposhnik, P. V. Moskalev, K. L. Chegereva, A. A. Zviagin, and A. A. Vasiliev, "Selective gas detection of H2 and CO by a single MOX-sensor," Sens. Actuators B, Chem., vol. 334, May 2021, Art. no. 129376, doi: 10.1016/j.snb.2020.129376.
K. Wu and C. Zhang, "Facile synthesis and ppb-level H2S sensing performance of hierarchical CuO microflowers assembled with nano-spindles," J. Mater. Science: Mater. Electron., vol. 31, no. 10, pp. 7937-7945, May 2020, doi: 10.1007/s10854-020-03332-8.
W.-J. Zhao, K.-L. Ding, Y.-S. Chen, F.-Y. Xie, and D. Xu, "Optimized low frequency temperature modulation for improving the selectivity and linearity of SnO2 gas sensor," IEEE Sensors J., vol. 20, no. 18, pp. 10433-10443, Sep. 2020, doi: 10.1109/JSEN.2020.2993055.
A. Amini and M. Vafaei, "Identifying binary mixtures of volatile organic compounds with isomeric components using a single thermal shock-induced generic SnO2 gas sensor," IEEE Sensors J., vol. 20, no. 22, pp. 13220-13228, Nov. 2020, doi: 10.1109/ JSEN.2020.3005542.
J. K. Radhakrishnan, M. Kumara, and Geetika, "Effect of temperature modulation, on the gas sensing characteristics of ZnO nanostructures, for gases O2, CO and Co2," Sensors Int., vol. 2, 2021, Art. no. 100059, doi: 10.1016/j.sintl.2020.100059.
D. Di Giuseppe, A. Catini, E. Comini, D. Zappa, C. Di Natale, and E. Martinelli, "Optimizing MOX sensor array performances with a reconfigurable self-adaptive temperature modulation interface," Sens. Actuators B, Chem., vol. 333, Apr. 2021, Art. no. 129509, doi: 10.1016/j.snb.2021.129509.
O. Lupan et al., "Heterostructure-based devices with enhanced humidity stability for H2 gas sensing applications in breath tests and portable batteries," Sens. Actuators A, Phys., vol. 329, Oct. 2021, Art. no. 112804, doi: 10.1016/j.sna.2021.112804.
K. Suematsu, N. Ma, K. Kodama, M. Yuasa, T. Kida, and K. Shimanoe, "Vanadium oxide loading on tin dioxide nanoparticles for improving gas detection in a humid atmosphere," Mater. Lett., vol. 179, pp. 214-216, Sep. 2016, doi: 10.1016/j.matlet.2016.05.083.
K. K. Pawar et al., "Hollow In2O3 microcubes for sensitive and selective detection of NO2 gas," J. Alloys Compounds, vol. 806, pp. 726-736, Oct. 2019, doi: 10.1016/j.jallcom.2019.07.248.
E. Singh, M. Meyyappan, and H. S. Nalwa, "Flexible graphene-based wearable gas and chemical sensors," ACS Appl. Mater. Interfaces, vol. 9, no. 40, p. 34544, Oct. 2017, doi: 10.1021/acsami.7b07063.
V. Postica et al., "Improved long-term stability and reduced humidity effect in gas sensing: SiO2 ultra-thin layered ZnO columnar films," Adv. Mater. Technol., vol. 6, no. 5, May 2021, Art. no. 2001137, doi: 10.1002/admt.202001137.
W. Guo, L. Huang, J. Zhang, Y. He, and W. Zeng, "Ni-doped SnO2/g-C3N4 nanocomposite with enhanced gas sensing performance for the eective detection of acetone in diabetes diagnosis," Sens. Actuators B, Chem., vol. 334, May 2021, Art. no. 129666, doi: 10.1016/j. snb.2021.129666.
C. Lou, Z. Li, C. Yang, X. Liu, W. Zheng, and J. Zhang, "Rational design of ordered porous SnO2/ZrO2 thin films for fast and selective triethylamine detection with humidity resistance," Sens. Actuators B, Chem., vol. 333, Apr. 2021, Art. no. 129572, doi: 10.1016/ j.snb.2021.129572.
K. Suematsu, N. Ma, K. Watanabe, M. Yuasa, T. Kida, and K. Shimanoe, "Effect of humid aging on the oxygen adsorption in SnO2 gas sensors," Sensors, vol. 18, no. 1, p. 254, Jan. 2018, doi: 10.3390/s18010254.
H. Mahdavi, S. Rahbarpour, S.-M. Hosseini-Golgoo, and H. Jamaati, "Reducing the destructive effect of ambient humidity variations on gas detection capability of a temperature modulated gas sensor by calcium chloride," Sens. Actuators B, Chem., vol. 331, Mar. 2021, Art. no. 129091, doi: 10.1016/j.snb.2020.129091.
M. Vafaei and A. Amini, "Chamberless NDIR CO2 sensor robust against environmental fluctuations," ACS Sensors, vol. 6, no. 4, pp. 1536-1542, Apr. 2021, doi: 10.1021/acssensors.0c01863.
V. Papapostolou, H. Zhang, B. J. Feenstra, and A. Polidori, "Development of an environmental chamber for evaluating the performance of low-cost air quality sensors under controlled conditions," Atmos. Environ., vol. 171, pp. 82-90, Dec. 2017, doi: 10.1016/ j.atmosenv.2017.10.003.
L. Wozniak, P. Kalinowski, G. Jasinski, and P. Jasinski, "FFT analysis of temperature modulated semiconductor gas sensor response for the prediction of ammonia concentration under humidity interference," Microelectron. Rel., vol. 84, pp. 163-169, May 2018, doi: 10.1016/j.microrel.2018.03.034.
M. Krivec et al., "Quantitative ethylene measurements with MOx chemiresistive sensors at different relative air humidities," Sensors, vol. 15, no. 11, pp. 28088-28098, Nov. 2015, doi: 10.3390/ s151128088.
M. Javed, M. Sajid, H. M. Z. Yousaf, G. Hassan, and H. Mahmood, "Facile and low cost temperature compensated humidity sensor and signal conditioning system," IEEE Sensors J., vol. 21, no. 13, pp. 14906-14914, Jul. 2021, doi: 10.1109/JSEN.2021.3073957.
H. Yu, Y. Yin, Y. Zhao, and Y. Yuan, "A recursive correction FDA method based on ICA combined with STAW of vinegar Enose data," Measurement, vol. 164, Nov. 2020, Art. no. 108022, doi: 10.1016/j.measurement.2020.108022.
J. Fonollosa, L. Fernandez, A. Gutierrez-Galvez, R. Huerta, and S. Marco, "Calibration transfer and drift counteraction in chemical sensor arrays using direct standardization," Sens. Actuators B, Chem., vol. 236, pp. 1044-1053, Nov. 2016, doi: 110.1016/j.snb.2016.05.089.
S. Capone et al., "Influence of electrodes ageing on the properties of the gas sensors based on SnO2," Sens. Actuators B, Chem., vol. 115, no. 1, pp. 396-402, May 2006, doi: 10.1016/j.snb.2005. 10.001.
S. Vallejos, I. Grácia, O. Chmela, E. Figueras, J. Hubálek, and C. Cané, "Chemoresistive micromachined gas sensors based on functionalized metal oxide nanowires: Performance and reliability," Sens. Actuators B, Chem., vol. 235, pp. 525-534, Nov. 2016, doi: 10.1016/j.snb.2016.05.102.
Y. Tian et al., "A drift-compensating novel deep belief classification network to improve gas recognition of electronic noses," IEEE Access, vol. 8, pp. 121385-121397, 2020, doi: 10.1109/ACCESS. 2020.3006729.
A. U. Rehman and A. Bermak, "Heuristic random forests (HRF) for drift compensation in electronic nose applications," IEEE Sensors J., vol. 19, no. 4, pp. 1443-1453, Feb. 2019, doi: 10.1109/ JSEN.2018.2881745.
C. Schultealbert, I. Uzun, T. Baur, T. Sauerwald, and A. Schütze, "Siloxane treatment of metal oxide semiconductor gas sensors in temperature-cycled operation-Sensitivity and selectivity," J. Sensors Sensor Syst., vol. 9, no. 2, pp. 283-292, Aug. 2020, doi: 10.5194/jsss-9-283-2020.
M. Schüler, T. Schneider, T. Sauerwald, and A. Schütze, "Impedance based detection of HMDSO poisoning in metal oxide gas sensors," Tm Technisches Messen, vol. 84, no. 11, pp. 697-705, Nov. 2017, doi: 10.1515/teme-2017-0002.
B.-S. Kim, J. Bae, H. Jeong, C. Choe, and H. Lee, "Surface restructuring of supported nano-ceria for improving sulfur resistance," ACS Catal., vol. 11, no. 12, pp. 7154-7159, Jun. 2021, doi: 10.1021/acscatal.1c02209.
Y. Suchorski et al., "The role of metal/oxide interfaces for long-range metal particle activation during CO oxidation," Nat. Mater., vol. 17, no. 6, p. 519, Jun. 2018, doi: 10.1038/s41563-018-0080-y.
K. Song, P. Xu, G. Wei, Y. Chen, and Q. Wang, "Health management decision of sensor system based on health reliability degree and grey group decision-making," Sensors, vol. 18, no. 7, p. 2316, Jul. 2018, doi: 10.3390/s18072316.
C. Zhang, Y. Luo, J. Xu, and M. Debliquy, "Room temperature conductive type metal oxide semiconductor gas sensors for NO2 detection," Sens. Actuators A, Phys., vol. 289, pp. 118-133, Apr. 2019, doi: 10.1016/j.sna.2019.02.027.
H.-J. Choi et al., "Ultraviolet photoactivated room temperature NO2 gas sensor of ZnO hemitubes and nanotubes covered with TiO2 nanoparticles," Nanomaterials, vol. 10, no. 3, p. 462, Mar. 2020, doi: 10.3390/nano10030462.
Y. Xia, L. Zhou, J. Yang, P. Du, L. Xu, and J. Wang, "Highly sensitive and fast optoelectronic room-temperature NO2 gas sensor based on ZnO nanorod-assembled macro-/mesoporous film," ACS Appl. Electron. Mater., vol. 2, no. 2, pp. 580-589, Feb. 2020, doi: 10.1021/acsaelm.9b00810.
X. Geng, C. Zhang, Y. Luo, H. Liao, and M. Debliquy, "Light assisted room-temperature NO2 sensors with enhanced performance based on black SnO1-@ZnO1-@SnO2-nanocomposite coatings deposited by solution precursor plasma spray," Ceram. Int., vol. 43, no. 8, pp. 5990-5998, Jun. 2017, doi: 10.1016/j.ceramint.2017. 01.136.
G. Dubourg and M. Radovic, "Multifunctional screen-printed TiO2 nanoparticles tuned by laser irradiation for a flexible and scalable UV detector and room-temperature ethanol sensor," ACS Appl. Mater. Interface, vol. 11, no. 6, pp. 6257-6266, Feb. 2019, doi: 10.1021/acsami.8b19976.
G. Li, Z. Sun, D. Zhang, Q. Xu, L. Meng, and Y. Qin, "Mechanism of sensitivity enhancement of a ZnO nanofilm gas sensor by UV light illumination," ACS Sensors, vol. 4, no. 6, pp. 1577-1585, Jun. 2019, doi: 10.1021/acssensors.9b00259.
F. Xu and H.-P. Ho, "Light-activated metal oxide gas sensors: A review," Micromachines, vol. 8, no. 11, p. 333, Nov. 2017, doi: 10.3390/mi8110333.
O. Casals et al., "A parts per billion (ppb) sensor for NO2 with microwatt (&W) power requirements based on micro light plates," ACS Sensors, vol. 4, no. 4, pp. 822-826, Apr. 2019, doi: 10.1021/ acssensors.9b00150.
M. Procek, A. Stolarczyk, and T. Pustelny, "Impact of temperature and UV irradiation on dynamics of NO2 sensors based on ZnO nanostructures," Nanomaterials, vol. 7, no. 10, p. 312, Oct. 2017, doi: 10.3390/nano7100312.
M. V. Malashchonak et al., "Band-gap and sub-band-gap photoelectrochemical processes at nanocrystalline CdS grown on ZnO by successive ionic layer adsorption and reaction method," Thin Solid Films, vol. 589, pp. 145-152, Aug. 2015, doi: 10.1016/j.tsf.2015.04.057.
D. Gupta, S. R. Meher, N. Illyaskutty, and Z. C. Alex, "Facile synthesis of Cu2O and CuO nanoparticles and study of their structural, optical and electronic properties," J. Alloys Compounds, vol. 743, pp. 737-745, Apr. 2018, doi: 10.1016/j.jallcom.2018.01.181.
X. Geng, P. Lu, C. Zhang, D. Lahem, M.-G. Olivier, and M. Debliquy, "Room-temperature NO2 gas sensors based on rGO@ZnO1-x composites: Experiments and molecular dynamics simulation," Sens. Actuators B, Chem., vol. 282, pp. 690-702, Mar. 2019, doi: 10.1016/ j.snb.2018.11.123.
X. Geng, C. Zhang, and M. Debliquy, "Cadmium sulfide activated zinc oxide coatings deposited by liquid plasma spray for room temperature nitrogen dioxide detection under visible light illumination," Ceram. Int., vol. 42, no. 4, pp. 4845-4852, Mar. 2016, doi: 10.1016/j.ceramint.2015.11.170.
J. Maslik et al., "Water-based indium tin oxide nanoparticle ink for printed toluene vapours sensor operating at room temperature," Sensors, vol. 18, no. 10, p. 3246, Sep. 2018, doi: 10.3390/s18103246.
Y. Huan, K. Wu, C. Li, H. Liao, M. Debliquy, and C. Zhang, "Micro-nano structured functional coatings deposited by liquid plasma spraying," J. Adv. Ceram., vol. 9, no. 5, pp. 517-534, Oct. 2020, doi: 10.1007/s40145-020-0402-9.
C. Zhang, J. Wang, and X. Geng, "Tungsten oxide coatings deposited by plasma spray using powder and solution precursor for detection of nitrogen dioxide gas," J. Alloys Compounds, vol. 668, pp. 128-136, May 2016, doi: 10.1016/j.jallcom.2016.01.219.
C. Zhang, G. Liu, K. Liu, and K. Wu, "ZnO1-x coatings deposited by atmospheric plasma spraying for room temperature ppb-level NO2 detection," Appl. Surf. Sci., vol. 528, Oct. 2020, Art. no. 147041, doi: 10.1016/j.apsusc.2020.147041.
K.-D. Wu, J.-Y. Xu, M. Debliquy, and C. Zhang, "Synthesis and NH3/TMA sensing properties of CuFe2O4 hollow microspheres at low working temperature," Rare Met., vol. 40, no. 7, pp. 1768-1777, Jul. 2021, doi: 10.1007/s12598-020-01609-9.
Y. Li, Y.-L. Lu, K.-D. Wu, D.-Z. Zhang, M. Debliquy, and C. Zhang, "Microwave-assisted hydrothermal synthesis of copper oxide-based gas-sensitive nanostructures," Rare Met., vol. 40, no. 6, pp. 1477-1493, Jun. 2021, doi: 10.1007/s12598-020-01557-4.
S. A. Zakaria, S. Samadi, and G. A. Cordshooli, "Synthesis and characterization of zirconium (IV) and vanadium (III) doped CeO2/TiO2 core/shell nanostructures as a gas sensor," Sens. Actuators A, Phys., vol. 318, Feb. 2021, Art. no. 112226, doi: 10.1016/j.sna.2020.112226.
X. Zhou et al., "Template-free synthesis of hierarchical ZnFe2O4yolk-shell microspheres for high-sensitivity acetone sensors," Nanoscale, vol. 8, no. 10, pp. 5446-5453, 2016, doi: 10.1039/c5nr06308f.
C. A. Zito, T. M. Perfecto, A. C. Dippel, A. C. Dippel, D. P. Volanti, and D. Koziej, "Low-temperature carbon dioxide gas sensor based on yolk-shell ceria nanospheres," ACS Appl. Mater. Interfaces, vol. 12, no. 15, pp. 17757-17763, Apr. 2020, doi: 10.1021/acsami.0c01641.
X.-Z. Song et al., "Triple-shelled ZnO/ZnFe2O4 heterojunctional hollow microspheres derived from Prussian blue analogue as highperformance acetone sensors," Sens. Actuators B, Chem., vol. 256, pp. 374-382, Mar. 2018, doi: 10.1016/j.snb.2017.10.081.
V. Postica et al., "Improved long-term stability and reduced humidity effect in gas sensing: SiO2 ultra-thin layered ZnO columnar films," Adv. Mater. Technol., vol. 6, no. 5, May 2021, Art. no. 12001137, doi: 10.1002/admt.202001137.