[en] Surface modification of cellulose nanocrystals (CNC) by organocatalysed grafting from ring-opening polymerization (ROP) of trimethylene carbonate was investigated. Organocatalysts including an amidine (DBU), a guanidine (TBD), an amino-pyridine (DMAP) and a phosphazene (BEMP) were successfully assessed for this purpose, with performances in the order TBD > BEMP > DMAP, DBU. The grafting ratio can be tuned by varying the experimental parameters, with the highest grafting of 74 % by weight obtained under mild conditions, i.e at room temperature in tetrahydrofuran with a low amount of catalyst. This value is much higher than that of typical ring opening polymerizations of cyclic esters initiated from the surface of cellulose nanoparticles. Additionally, DSC analysis of the modified material revealed the presence of a glass transition temperature, indicative of a sufficient graft length to display polymeric behaviour. This is, to our knowledge, the first example of cellulose nanocrystals grafted with polycarbonate chains.
Research center :
CIRMAP - Centre d'Innovation et de Recherche en Matériaux Polymères
Disciplines :
Chemistry
Author, co-author :
Lalanne-Tisné, Michael; Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, campus Kulak Kortrijk, Etienne Sabbelaan 53, box 7659, B-8500 Kortrijk, Belgium, Université de Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
Eyley, Samuel; Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, campus Kulak Kortrijk, Etienne Sabbelaan 53, box 7659, B-8500 Kortrijk, Belgium
De Winter, Julien ; Université de Mons - UMONS > Faculté des Sciences > Service de Synthèse et spectrométrie de masse organiques
Favrelle-Huret, Audrey; Université de Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
Thielemans, Wim; Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, campus Kulak Kortrijk, Etienne Sabbelaan 53, box 7659, B-8500 Kortrijk, Belgium. Electronic address: wim.thielemans@kuleuven.be
Zinck, Philippe; Université de Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France. Electronic address: philippe.zinck@univ-lille.fr
Language :
English
Title :
Cellulose nanocrystals modification by grafting from ring opening polymerization of a cyclic carbonate.
S836 - Synthèse et spectrométrie de masse organiques
Research institute :
Research Institute for Materials Science and Engineering
Funding text :
The authors are grateful to Aurélie Malfait for SEC measurements, and Gertrude Kignelman for the help with contact angle analysis. The authors also acknowledge financial support from the Initiatives for Science, Innovation, Territories and Economy (I-SITE) Lille Nord – Europe (MLT PhD fellowship), from Research Foundation Flanders (grant G0C6013N), KU Leuven (grant C14/18/061) and from the European Union's European Fund for Regional Development, Flanders Innovation & Entrepreneurship, and the Province of West-Flanders for financial support in the Accelerate3 project (Interreg Vlaanderen-Nederland program). Université de Lille, Chevreul Institute (FR 2638), Ministère de l'Enseignement Supérieur de la Recherche et de l'Innovation, Région Hauts de France are also acknowledged for supporting and funding partially this work.The authors are grateful to Aurélie Malfait for SEC measurements, and Gertrude Kignelman for the help with contact angle analysis. The authors also acknowledge financial support from the Initiatives for Science, Innovation, Territories and Economy (I-SITE) Lille Nord – Europe (MLT PhD fellowship), from Research Foundation Flanders (grant G0C6013N ), KU Leuven (grant C14/18/061 ) and from the European Union 's European Fund for Regional Development, Flanders Innovation & Entrepreneurship , and the Province of West-Flanders for financial support in the Accelerate 3 project (Interreg Vlaanderen-Nederland program). Université de Lille, Chevreul Institute ( FR 2638 ), Ministère de l'Enseignement Supérieur de la Recherche et de l'Innovation, Région Hauts de France are also acknowledged for supporting and funding partially this work.
Albertsson, A.-C., Varma, I.K., Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 4:6 (2003), 1466–1486.
Anžlovar, A., Krajnc, A., Žagar, E., Silane modified cellulose nanocrystals and nanocomposites with LLDPE prepared by melt processing. Cellulose 27:10 (2020), 5785–5800.
Artham, T., Doble, M., Biodegradation of aliphatic and aromatic polycarbonates: Biodegradation of aliphatic and aromatic polycarbonates. Macromolecular Bioscience 8:1 (2008), 14–24.
Azzam, F., Heux, L., Jean, B., Adjustment of the chiral nematic phase properties of cellulose nanocrystals by polymer grafting. Langmuir 32:17 (2016), 4305–4312.
Girouard, N.M., Xu, S., Schueneman, G.T., Shofner, M.L., Meredith, J.C., Site-selective modification of cellulose nanocrystals with isophorone diisocyanate and formation of polyurethane-CNC composites. ACS Applied Materials & Interfaces 8:2 (2016), 1458–1467.
Habibi, Y., Key advances in the chemical modification of nanocelluloses. Chemical Society Reviews 43:5 (2014), 1519–1542.
Habibi, Y., Goffin, A.-L., Schiltz, N., Duquesne, E., Dubois, P., Dufresne, A., Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. Journal of Materials Chemistry, 18(41), 2008, 5002.
Habibi, Y., Lucia, L.A., Rojas, O.J., Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews 110:6 (2010), 3479–3500.
Hafrén, J., Córdova, A., Direct organocatalytic polymerization from cellulose fibers: Direct organocatalytic polymerization from cellulose fibers. Macromolecular Rapid Communications 26:2 (2005), 82–86.
Helou, M., Miserque, O., Brusson, J.-M., Carpentier, J.-F., Guillaume, S.M., Ultraproductive, zinc-mediated, immortal ring-opening polymerization of trimethylene carbonate. Chemistry - A European Journal 14:29 (2008), 8772–8775.
Helou, M., Miserque, O., Brusson, J.-M., Carpentier, J.-F., Guillaume, S.M., Organocatalysts for the controlled “Immortal” ring-opening polymerization of six-membered-ring cyclic carbonates: A metal-free, green process. Chemistry - A European Journal 16:46 (2010), 13805–13813.
Ishikawa, T., (eds.) Superbases for organic synthesis: Guanidines, amidines and phosphazenes and related organocatalysts, 2009, John Wiley & Sons, Ltd, Chichester 336 pp.
Jerome, C., Lecomte, P., Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Advanced Drug Delivery Reviews 60:9 (2008), 1056–1076.
Kaljurand, I., Kütt, A., Sooväli, L., Rodima, T., Mäemets, V., Leito, I., Koppel, I.A., Extension of the self-consistent spectrophotometric basicity scale in acetonitrile to a full span of 28 p K a units: Unification of different basicity scales. The Journal of Organic Chemistry 70:3 (2005), 1019–1028.
Kamber, N.E., Jeong, W., Waymouth, R.M., Pratt, R.C., Lohmeijer, B.G.G., Hedrick, J.L., Organocatalytic ring-opening polymerization. Chemical Reviews 107:12 (2007), 5813–5840.
Kluin, O.S., van der Mei, H.C., Busscher, H.J., Neut, D., A surface-eroding antibiotic delivery system based on poly-(trimethylene carbonate). Biomaterials 30:27 (2009), 4738–4742.
Labet, M., Thielemans, W., Improving the reproducibility of chemical reactions on the surface of cellulose nanocrystals: ROP of ε-caprolactone as a case study. Cellulose 18:3 (2011), 607–617.
Labet, M., Thielemans, W., Citric acid as a benign alternative to metal catalysts for the production of cellulose-grafted-polycaprolactone copolymers. Polymer Chemistry, 3(3), 2012, 679.
Lalanne-Tisné, M., Mees, M.A., Eyley, S., Zinck, P., Thielemans, W., Organocatalyzed ring opening polymerization of lactide from the surface of cellulose nanofibrils. Carbohydrate Polymers, 250, 2020, 116974.
Lasseuguette, E., Grafting onto microfibrils of native cellulose. Cellulose 15:4 (2008), 571–580.
Lendlein, A., Langer, R., Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296:5573 (2002), 1673–1676.
Marechal, Y., Chanzy, H., The hydrogen bond network in ib cellulose as observed by infrared spectrometry. Journal of Molecular Structure, 14, 2000.
Meimoun, J., Favrelle-Huret, A., Bria, M., Merle, N., Stoclet, G., De Winter, J., Mincheva, R., Raquez, J.-M., Zinck, P., Epimerization and chain scission of polylactides in the presence of an organic base,TBD. Polymer Degradation and Stability, 181, 2020, 109188.
Miao, C., Hamad, W.Y., In-situ polymerized cellulose nanocrystals (CNC)—poly( l -lactide) (PLLA) nanomaterials and applications in nanocomposite processing. Carbohydrate Polymers 153 (2016), 549–558.
Nyquist, R.A., Potts, W.J., Infrared absorptions of organic carbonate derivatives and related compounds. Spectrochimie Acts 17 (1961), 679–697.
Ottou, W.N., Sardon, H., Mecerreyes, D., Vignolle, J., Taton, D., Update and challenges in organo-mediated polymerization reactions. Progress in Polymer Science 56 (2016), 64–115.
Ottou, W.N., Sardon, H., Mecerreyes, D., Vignolle, J., Taton, D., Update and challenges in organo-mediated polymerization reactions. Progress in Polymer Science 56 (2016), 64–115.
Palard, I., Schappacher, M., Belloncle, B., Soum, A., Guillaume, S.M., Unprecedented polymerization of trimethylene carbonate initiated by a samarium borohydride complex: Mechanistic insights and copolymerization with ɛ-caprolactone. Chemistry - A European Journal 13:5 (2007), 1511–1521.
Park, S.-A., Eom, Y., Jeon, H., Koo, J.M., Lee, E.S., Jegal, J., Hwang, S.Y., Oh, D.X., Park, J., Preparation of synergistically reinforced transparent bio-polycarbonate nanocomposites with highly dispersed cellulose nanocrystals. Green Chemistry 21:19 (2019), 5212–5221.
Penczek, S., Cypryk, M., Duda, A., Kubisa, P., Slomkowski, S., Living ring-opening polymerizations of heterocyclic monomers. Progress in Polymer Science 32:2 (2007), 247–282.
Pendergraph, S.A., Klein, G., Johansson, M.K.G., Carlmark, A., Mild and rapid surface initiated ring-opening polymerisation of trimethylene carbonate from cellulose. RSC Advances, 4(40), 2014, 20737.
Revol, J.-F., Bradford, H., Giasson, J., Marchessault, R.H., Gray, D.G., Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. International Journal of Biological Macromolecules 14:3 (1992), 170–172.
Sahlin, K., Forsgren, L., Moberg, T., Bernin, D., Rigdahl, M., Westman, G., Surface treatment of cellulose nanocrystals (CNC): Effects on dispersion rheology. Cellulose 25:1 (2018), 331–345.
Samuel, C., Chalamet, Y., Boisson, F., Majesté, J.-C., Becquart, F., Fleury, E., Highly efficient metal-free organic catalysts to design new environmentally-friendly starch-based blends. Journal of Polymer Science Part A: Polymer Chemistry 52:4 (2014), 493–503.
Simón, L., Goodman, J.M., The mechanism of TBD-catalyzed ring-opening polymerization of cyclic esters. The Journal of Organic Chemistry 72:25 (2007), 9656–9662.
Stanley, N., Chenal, T., Jacquel, N., Saint-Loup, R., Prates Ramalho, J.P., Zinck, P., Organocatalysts for the synthesis of poly(ethylene terephthalate-co-isosorbide terephthalate): A combined experimental and DFT study. Macromolecular Materials and Engineering, 304(9), 2019, 1900298.
Thielemans, W., Belgacem, M.N., Dufresne, A., Starch nanocrystals with large chain surface modifications. Langmuir 22:10 (2006), 4804–4810.
Trinh, B.M., Mekonnen, T., Hydrophobic esterification of cellulose nanocrystals for epoxy reinforcement. Polymer 155 (2018), 64–74.
Wohlhauser, S., Delepierre, G., Labet, M., Morandi, G., Thielemans, W., Weder, C., Zoppe, J.O., Grafting polymers from cellulose nanocrystals: Synthesis, properties, and applications. Macromolecules 51:16 (2018), 6157–6189.
Xu, J., Wu, Z., Wu, Q., Kuang, Y., Acetylated cellulose nanocrystals with high-crystallinity obtained by one-step reaction from the traditional acetylation of cellulose. Carbohydrate Polymers, 229, 2020, 115553.
Yao, H., Li, J., Li, N., Wang, K., Li, X., Wang, J., Surface modification of cardiovascular stent material 316L SS with estradiol-loaded poly (trimethylene carbonate) film for better biocompatibility. Polymers, 9(11), 2017, 598.
Yu, W., Maynard, E., Chiaradia, V., Arno, M.C., Dove, A.P., Aliphatic polycarbonates from cyclic carbonate monomers and their application as biomaterials. Chemical Reviews 121 (2021), 10865–10907.