Article (Scientific journals)
Impact-Resistant Poly(3-Hydroxybutyrate)/Poly(ε-Caprolactone)-Based Materials, through Reactive Melt Processing, for Compression-Molding and 3D-Printing Applications.
Laoutid, Fouad; Lenoir, Hadrien; Molins Santaeularia, Adriana et al.
2022In Materials, 15 (22), p. 8233
Peer reviewed
 

Files


Full Text
763 Dubois et al Materials 2022 15 8233.pdf
Author postprint (5.54 MB)
Download

All documents in ORBi UMONS are protected by a user license.

Send to



Details



Keywords :
additive manufacturing; biopolymers; blends; polyhydroxyalkanoates; reactive extrusion; 3-D printing; 3D-printing; Biocompatible polymer; Blend; Di-cumyl peroxides; Modulus values; Poly(ε caprolactone); Polyhydroxybutyrate; Reactive extrusions; Materials Science (all); Condensed Matter Physics; General Materials Science
Abstract :
[en] Biobased and biocompatible polymers, such as polyhydroxyalkanoates (PHAs), are of great interest for a large range of applications in the spirit of green chemistry and upcoming reuse and recycling strategies. Polyhydroxybutyrate (PHB), as a promising biocompatible polymer belonging to PHAs, is subject to increased research concern regarding the high degree of crystallinity and brittle behavior of the resulting materials. Therefore, the improvement of PHB's physico-mechanical properties aims to decrease the Young's modulus values and to increase the ductility of samples. Here, we proposed an ambitious approach to develop melt-processed materials, while combining PHB characteristics with the ductile properties of poly(ε-caprolactone) (PCL). In order to compatibilize the poorly miscible PHB/PCL blends, dicumyl peroxide (DCP) was used as a free-radical promotor of polyester interchain reactions via the reaction extrusion process. The resulting PHB/PCL-DCP materials revealed a slight increase in the elongation at break, and significant improvement in the impact resistance (7.2 kJ.m-2) as compared to PHB. Additional decrease in the Young's modulus values was achieved by incorporating low molecular polyethylene glycol (PEG) as a plasticizer, leading to an important improvement in the impact resistance (15 kJ.m-2). Successful 3D printing using fused deposition melting (FDM) of the resulting PHB/PCL-based blends for the design of a prosthetic finger demonstrated the great potential of the proposed approach for the development of next-generation biomaterials.
Research center :
CIRMAP - Centre d'Innovation et de Recherche en Matériaux Polymères
Disciplines :
Materials science & engineering
Author, co-author :
Laoutid, Fouad  ;  Université de Mons - UMONS
Lenoir, Hadrien;  Polymeric and Composite Materials Unit, Materia Nova Research Center, University of Mons, Nicolas Copernic 3, 7000 Mons, Belgium
Molins Santaeularia, Adriana;  Polymeric and Composite Materials Unit, Materia Nova Research Center, University of Mons, Nicolas Copernic 3, 7000 Mons, Belgium
Toncheva, Antoniya ;  Université de Mons - UMONS
Schouw, Tim ;  Polymeric and Composite Materials Unit, Materia Nova Research Center, University of Mons, Nicolas Copernic 3, 7000 Mons, Belgium
Dubois, Philippe  ;  Université de Mons - UMONS
Language :
English
Title :
Impact-Resistant Poly(3-Hydroxybutyrate)/Poly(ε-Caprolactone)-Based Materials, through Reactive Melt Processing, for Compression-Molding and 3D-Printing Applications.
Publication date :
19 November 2022
Journal title :
Materials
ISSN :
1996-1944
eISSN :
1996-1944
Publisher :
MDPI, Switzerland
Volume :
15
Issue :
22
Pages :
8233
Peer reviewed :
Peer reviewed
Research unit :
S816 - Matériaux Polymères et Composites
Research institute :
R400 - Institut de Recherche en Science et Ingénierie des Matériaux
Available on ORBi UMONS :
since 12 January 2023

Statistics


Number of views
8 (1 by UMONS)
Number of downloads
35 (0 by UMONS)

Scopus citations®
 
9
Scopus citations®
without self-citations
9
OpenCitations
 
0
OpenAlex citations
 
9

Bibliography


Similar publications



Contact ORBi UMONS