Impact-Resistant Poly(3-Hydroxybutyrate)/Poly(ε-Caprolactone)-Based Materials, through Reactive Melt Processing, for Compression-Molding and 3D-Printing Applications.
[en] Biobased and biocompatible polymers, such as polyhydroxyalkanoates (PHAs), are of great interest for a large range of applications in the spirit of green chemistry and upcoming reuse and recycling strategies. Polyhydroxybutyrate (PHB), as a promising biocompatible polymer belonging to PHAs, is subject to increased research concern regarding the high degree of crystallinity and brittle behavior of the resulting materials. Therefore, the improvement of PHB's physico-mechanical properties aims to decrease the Young's modulus values and to increase the ductility of samples. Here, we proposed an ambitious approach to develop melt-processed materials, while combining PHB characteristics with the ductile properties of poly(ε-caprolactone) (PCL). In order to compatibilize the poorly miscible PHB/PCL blends, dicumyl peroxide (DCP) was used as a free-radical promotor of polyester interchain reactions via the reaction extrusion process. The resulting PHB/PCL-DCP materials revealed a slight increase in the elongation at break, and significant improvement in the impact resistance (7.2 kJ.m-2) as compared to PHB. Additional decrease in the Young's modulus values was achieved by incorporating low molecular polyethylene glycol (PEG) as a plasticizer, leading to an important improvement in the impact resistance (15 kJ.m-2). Successful 3D printing using fused deposition melting (FDM) of the resulting PHB/PCL-based blends for the design of a prosthetic finger demonstrated the great potential of the proposed approach for the development of next-generation biomaterials.
Research center :
CIRMAP - Centre d'Innovation et de Recherche en Matériaux Polymères
Lenoir, Hadrien; Polymeric and Composite Materials Unit, Materia Nova Research Center, University of Mons, Nicolas Copernic 3, 7000 Mons, Belgium
Molins Santaeularia, Adriana; Polymeric and Composite Materials Unit, Materia Nova Research Center, University of Mons, Nicolas Copernic 3, 7000 Mons, Belgium
Impact-Resistant Poly(3-Hydroxybutyrate)/Poly(ε-Caprolactone)-Based Materials, through Reactive Melt Processing, for Compression-Molding and 3D-Printing Applications.
Wei L. Liang S. McDonald A.G. Thermophysical properties and biodegradation behavior of green composites made from polyhydroxybutyrate and potato peel waste fermentation residue Ind. Crops Prod. 2015 69 91 103 10.1016/j.indcrop.2015.02.011
Chen G.Q. Patel M.K. Plastics derived from biological sources: Present and future: A technical and environmental review Chem. Rev. 2012 112 2082 2099 10.1021/cr200162d
Raza Z.A. Khalil S. Abid S. Recent progress in development and chemical modification of poly(hydroxybutyrate)-based blends for potential medical applications Int. J. Biol. Macromol. 2020 160 77 100 10.1016/j.ijbiomac.2020.05.114 32439444
Bugnicourt E. Cinelli P. Lazzeri A. Alvarez V.A. Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging Express Polym. Lett. 2014 8 791 808 10.3144/expresspolymlett.2014.82
Auriemma M. Piscitelli A. Pasquino R. Cerruti P. Malinconico M. Grizzuti N. Blending poly(3-hydroxybutyrate) with tannic acid: Influence of a polyphenolic natural additive on the rheological and thermal behavior Eur. Polym. J. 2015 63 123 131 10.1016/j.eurpolymj.2014.12.021
Hong S.G. Hsu H.W. Ye M.T. Thermal properties and applications of low molecular weight polyhydroxybutyrate J. Therm. Anal. Calorim. 2013 111 1243 1250 10.1007/s10973-012-2503-3
De Koning G.J.M. Lemstra P.J. Hill D.J.T. Carswell T.G. O’Donnell J.H. Ageing phenomena in bacterial poly[(R)-3-hydroxybutyrate]: 1. A study on the mobility in poly[(R)-3-hydroxybutyrate] powders by monitoring the radical decay with temperature after γ-radiolysis at 77 K Polymer 1992 33 3295 3297 10.1016/0032-3861(92)90250-Z
Gazzano M. Focarete M.L. Riekel C. Ripamonti A. Scandola M. Structural Investigation of Poly(3-hydroxybutyrate) Spherulites by Microfocus X-Ray Diffraction Macromol. Chem. Phys. 2001 202 1405 1409 10.1002/1521-3935(20010501)202:8<1405::AID-MACP1405>3.0.CO;2-5
Poirier Y. Dennis D.E. Nawrath C. Somerville C. Progress toward biologically produced Biodegradable Thermoplastics Adv. Mater. 1993 5 30 37 10.1002/adma.19930050105
Mousavioun P. Doherty W.O. George G. Thermal stability and miscibility of poly(hydroxybutyrate) and soda lignin blends Ind. Crops Prod. 2010 32 656 661 10.1016/j.indcrop.2010.08.001
Sharma V. Sehgal R. Gupta R. Polyhydroxyalkanoate (PHA): Properties and Modifications Polymer 2020 212 123161 10.1016/j.polymer.2020.123161
Blends and Composites of Polyhydroxyalkanoates (PHAs) and Their Applications—ScienceDirect Available online: https://www.sciencedirect.com/science/article/pii/S0014305721005589 (accessed on 22 June 2022)
Zhang M. Thomas N.L. Preparation and properties of polyhydroxybutyrate blended with different types of starch J. Appl. Polym. Sci. 2010 116 688 694 10.1002/app.30991
Zhang L. Deng X. Zhao S. Huang Z. Biodegradable polymer blends of poly(3-hydroxybutyrate) and starch acetate Polym. Int. 1997 44 104 110 10.1002/(SICI)1097-0126(199709)44:1<104::AID-PI812>3.0.CO;2-#
Abdelwahab M.A. Flynn A. Chiou B.-S. Imam S. Orts W. Chiellini E. Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends Polym. Degrad. Stab. 2012 97 1822 1828 10.1016/j.polymdegradstab.2012.05.036
Willett J.L. Kotnis M.A. O’Brien G.S. Fanta G.F. Gordon S.H. Properties of starch-graft-poly(glycidyl methacrylate)–PHBV composites J. Appl. Polym. Sci. 1998 70 1121 1127 10.1002/(SICI)1097-4628(19981107)70:6<1121::AID-APP8>3.0.CO;2-Q
Lai S.-M. Sun W.-W. Don T.-M. Preparation and characterization of biodegradable polymer blends from poly(3-hydroxybutyrate)/poly(vinyl acetate)-modified corn starch Polym. Eng. Sci. 2015 55 1321 1329 10.1002/pen.24071
Garcia-Garcia D. Ferri J.M. Boronat T. López-Martínez J. Balart R. Processing and characterization of binary poly(hydroxybutyrate) (PHB) and poly(caprolactone) (PCL) blends with improved impact properties Polym. Bull. 2016 73 3333 3350 10.1007/s00289-016-1659-6
Li Y. Dong Q. Han C. Bian Y. Zhang X. Dong L. Toward environment-friendly composites of poly(ε-caprolactone) reinforced with stereocomplex-type poly(l -lactide)/poly(d -lactide) J. Appl. Polym. Sci. 2014 131 31 34 10.1002/app.40208
Fernandez J.M. Molinuevo M.S. Cortizo M.S. Cortizo A.M. Development of an osteoconductive PCL–PDIPF–hydroxyapatite composite scaffold for bone tissue engineering J. Tissue Eng. Regen. Med. 2011 5 e126 e135 10.1002/term.394
Woodruff M.A. Hutmacher D.W. The return of a forgotten polymer—Polycaprolactone in the 21st century Prog. Polym. Sci. 2010 35 1217 1256 10.1016/j.progpolymsci.2010.04.002
Cheng G. Cai Z. Wang L. Biocompatibility and biodegradation of poly(hydroxybutyrate)/poly(ethylene glycol) blend films J. Mater. Sci. Mater. Med. 2003 14 1073 1078 10.1023/B:JMSM.0000004004.37103.f4
Pivsa-Art W. Fujii K. Nomura K. Aso Y. Ohara H. Yamane H. The effect of poly(ethylene glycol) as plasticizer in blends of poly(lactic acid) and poly(butylene succinate) J. Appl. Polym. Sci. 2016 133 43044 10.1002/app.43044
Zytner P. Wu F. Misra M. Mohanty A.K. Toughening of Biodegradable Poly(3-hydroxybutyrate- co -3-hydroxyvalerate)/Poly(ε-caprolactone) Blends by In Situ Reactive Compatibilization ACS Omega 2020 5 14900 14910 10.1021/acsomega.9b04379
Ivorra-Martinez J. Verdu I. Fenollar O. Sanchez-Nacher L. Balart R. Quiles-Carrillo L. Manufacturing and Properties of Binary Blend from Bacterial Polyester Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(caprolactone) with Improved Toughness Polymers 2020 12 1118 10.3390/polym12051118 32422915
Hinuber C. Haussler L. Vogel R. Brunig H. Heinrich G. Werner C. Hollow fibers made from a poly(3-hydroxybutyrate)/poly-ε-caprolactone blend Express Polym. Lett. 2011 5 643 652 10.3144/expresspolymlett.2011.62
Lovera D. Márquez L. Balsamo V. Taddei A. Castelli C. Müller A.J. Crystallization, Morphology, and Enzymatic Degradation of Polyhydroxybutyrate/Polycaprolactone (PHB/PCL) Blends Macromol. Chem. Phys. 2007 208 924 937 10.1002/macp.200700011
Laoutid F. François D. Paint Y. Bonnaud L. Dubois P. Using Nanosilica to Fine-Tune Morphology and Properties of Polyamide 6/Poly(propylene) Blends Macromol. Mater. Eng. 2013 298 328 338 10.1002/mame.201200047
Díaz M.F. Barbosa S.E. Capiati N.J. Reactive compatibilization of PE/PS blends. Effect of copolymer chain length on interfacial adhesion and mechanical behavior Polymer 2007 48 1058 1065 10.1016/j.polymer.2006.12.040
Semba T. Kitagawa K. Ishiaku U.S. Hamada H. The effect of crosslinking on the mechanical properties of polylactic acid/polycaprolactone blends J. Appl. Polym. Sci. 2006 101 1816 1825 10.1002/app.23589
Semba T. Kitagawa K. Ishiaku U.S. Kotaki M. Hamada H. Effect of compounding procedure on mechanical properties and dispersed phase morphology of poly(lactic acid)/polycaprolactone blends containing peroxide J. Appl. Polym. Sci. 2007 103 1066 1074 10.1002/app.25311
Wang R. Wang S. Zhang Y. Wan C. Ma P. Toughening modification of PLLA/PBS blends via in situ compatibilization Polym. Eng. Sci. 2009 49 26 33 10.1002/pen.21210
Dong W. Ma P. Wang S. Chen M. Cai X. Zhang Y. Effect of partial crosslinking on morphology and properties of the poly(β-hydroxybutyrate)/poly(d,l-lactic acid) blends Polym. Degrad. Stab. 2013 98 1549 1555 10.1016/j.polymdegradstab.2013.06.033
Ma P. Hristova-Bogaerds D.G. Lemstra P.J. Zhang Y. Wang S. Toughening of PHBV/PBS and PHB/PBS Blends via In situ Compatibilization Using Dicumyl Peroxide as a Free-Radical Grafting Initiator Macromol. Mater. Eng. 2012 297 402 410 10.1002/mame.201100224
Garcia-Garcia D. Rayón E. Carbonell-Verdu A. Lopez-Martinez J. Balart R. Improvement of the compatibility between poly(3-hydroxybutyrate) and poly(ε-caprolactone) by reactive extrusion with dicumyl peroxide Eur. Polym. J. 2017 86 41 57 10.1016/j.eurpolymj.2016.11.018
Sauer B.B. Kampert W.G. Neal Blanchard E. Threefoot S.A. Hsiao B.S. Temperature modulated DSC studies of melting and recrystallization in polymers exhibiting multiple endotherms Polymer 2000 41 1099 1108 10.1016/S0032-3861(99)00258-X
Hsiao B.S. Zuo F. Mao Y. Schick C. Experimental Techniques Handbook of Polymer Crystallization John Wiley & Sons, Ltd. Hoboken, NJ, USA 2013 1 30 978-1-118-54183-8
Menczel J.D. Judovits L.H. Prime R.B. Bair H.E. Reading M. Swier S. Differential scanning calorimetry (DSC) Thermal Analysis of Polymers: Fundamentals and Applications John Wiley & Sons Hoboken, NJ, USA 2009 Volume 2 7 240
Gunaratne L.M.W.K. Shanks R.A. Amarasinghe G. Thermal history effects on crystallisation and melting of poly(3-hydroxybutyrate) Thermochim. Acta 2004 423 127 135 10.1016/j.tca.2004.05.003
Gunaratne L.M.W.K. Shanks R.A. Multiple melting behaviour of poly(3-hydroxybutyrate-co-hydroxyvalerate) using step-scan DSC Eur. Polym. J. 2005 41 2980 2988 10.1016/j.eurpolymj.2005.06.015
Anbukarasu P. Sauvageau D. Elias A. Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting Sci. Rep. 2015 5 17884 10.1038/srep17884 26640089
Laoutid F. Persenaire O. Bonnaud L. Dubois P. Flame retardant polypropylene through the joint action of sepiolite and polyamide 6 Polym. Degrad. Stab. 2013 98 1972 1980 10.1016/j.polymdegradstab.2013.07.018
Jost V. Langowski H.-C. Effect of different plasticisers on the mechanical and barrier properties of extruded cast PHBV films Eur. Polym. J. 2015 68 302 312 10.1016/j.eurpolymj.2015.04.012
Liu H. Gao Z. Hu X. Wang Z. Su T. Yang L. Yan S. Blending Modification of PHBV/PCL and its Biodegradation by Pseudomonas mendocina J. Polym. Environ. 2017 25 156 164 10.1007/s10924-016-0795-2
Park S. Shou W. Makatura L. Matusik W. Fu K. (Kelvin) 3D printing of polymer composites: Materials, processes, and applications Matter 2022 5 43 76 10.1016/j.matt.2021.10.018