2D-To-3D; Bottom up approach; Crystals structures; Formation mechanism; Lead phthalocyanine; Molecular materials; Molecular networks; Molecular semiconductors; Non-planar molecules; Physisorbed; Chemistry (all); Chemical Engineering (all); Materials Chemistry; General Chemical Engineering; General Chemistry
Abstract :
[en] In this study, a new bottom-up approach is proposed to predict the crystal structure of the substrate-induced polymorph (SIP) of an archetypal molecular semiconductor. In spite of intense efforts, the formation mechanism of SIPs is still not fully understood, and predicting their crystal structure is a very delicate task. Here, we selected lead phthalocyanine (PbPc) as a prototypical molecular material because it is a highly symmetrical yet nonplanar molecule and we demonstrate that the growth and crystal structure of the PbPc SIPs can be templated by the corresponding physisorbed self-assembled molecular networks (SAMNs). Starting from SAMNs of PbPc formed at the solution/graphite interface, the structural and energetic aspects of the assembly were studied by a combination of in situ scanning tunneling microscopy and multiscale computational chemistry approach. Then, the growth of a PbPc SIP on top of the physisorbed monolayer was modeled without prior experimental knowledge, from which the crystal structure of the SIP was predicted. The theoretical prediction of the SIP was verified by determining the crystal structure of PbPc thin films using X-ray diffraction techniques, revealing the formation of a new polymorph of PbPc on the graphite substrate. This study clearly illustrates the correlation between the SAMNs and SIPs, which are traditionally considered as two separate but conceptually connected research areas. This approach is applicable to molecular materials in general to predict the crystal structure of their SIPs.
Disciplines :
Chemistry
Author, co-author :
Hao, Yansong ✱; Université de Mons - UMONS > Faculté des Sciences > Service de Chimie des matériaux nouveaux ; Electron Microscopy for Materials Science (EMAT), NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
Velpula, Gangamallaiah ; Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven-University of Leuven, Leuven, Belgium
Kaltenegger, Martin; Institute of Solid State Physics, Graz University of Technology, Graz, Austria ; Laboratory of Polymer Chemistry, Faculty of Science, Université Libre de Bruxelles (ULB), Brussels, Belgium
Bodlos, Wolfgang Rao ; Institute of Solid State Physics, Graz University of Technology, Graz, Austria
Vibert, François; Laboratory of Polymer Chemistry, Faculty of Science, Université Libre de Bruxelles (ULB), Brussels, Belgium
Mali, Kunal S. ; Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven-University of Leuven, Leuven, Belgium
De Feyter, Steven ; Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven-University of Leuven, Leuven, Belgium
Resel, Roland ; Institute of Solid State Physics, Graz University of Technology, Graz, Austria
Geerts, Yves Henri ; Laboratory of Polymer Chemistry, Faculty of Science, Université Libre de Bruxelles (ULB), Brussels, Belgium ; International Solvay Institutes of Physics and Chemistry, ULB, Brussels, Belgium
Van Aert, Sandra; Electron Microscopy for Materials Science (EMAT), NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
Beljonne, David ; Université de Mons - UMONS > Faculté des Sciences > Service de Chimie des matériaux nouveaux
Lazzaroni, Roberto ✱; Université de Mons - UMONS > Faculté des Sciences > Service de Chimie des matériaux nouveaux
✱ These authors have contributed equally to this work.
Language :
English
Title :
From 2D to 3D: Bridging Self-Assembled Monolayers to a Substrate-Induced Polymorph in a Molecular Semiconductor
R400 - Institut de Recherche en Science et Ingénierie des Matériaux R150 - Institut de Recherche sur les Systèmes Complexes
Funders :
Fonds Wetenschappelijk Onderzoek Gouvernement Wallon Fonds De La Recherche Scientifique - FNRS
Funding text :
This work is supported by FWO and FNRS within the 2Dto3D project of the EOS program (grant number 30489208). The molecular modeling activities in Mons are supported by FNRS (Consortium des Équipements de Calcul Intensif – CÉCI, under Grant 2.5020.11) and by the Walloon Region (ZENOBE Tier-1 supercomputer, under grant 1117545). Y.G. is thankful to the Belgian National Fund for Scientific Research (FNRS) for financial support through research projects BTBT no. 2.4565.11, Phasetrans no. T.0058.14, and Pi-Fast no. T.0072.18. Financial supports from the French Community of Belgium (ARC n° 20061) and by the Walloon Region (WCS no. 1117306 and SOLIDYE no. 1510602) are also acknowledged. D.B. is an FNRS Research Director. G.M.V., K.S.M., and S.D.F. acknowledge support from FWO and KU Leuven-Internal Funds. The authors acknowledge Dr. D. Cornil for his assistance with the STM image simulations and the Synchrotron Elettra Trieste for allocation of synchrotron radiation and thank Luisa Barba for assistance in using beamline XRD1.
Jones, A. O.; Chattopadhyay, B.; Geerts, Y. H.; Resel, R. Substrate-Induced and Thin-Film Phases: Polymorphism of Organic Materials on Surfaces. Adv. Funct. Mater. 2016, 26, 2233-2255, 10.1002/adfm.201503169
Yoneya, M.; Kawasaki, M.; Ando, M. Are pentacene monolayer and thin-film polymorphs really substrate-induced? A molecular dynamics simulation study. J. Phys. Chem. C 2012, 116, 791-795, 10.1021/jp208468b
Hilfiker, R. Polymorphism in the pharmaceutical industry; Wiley Online Library: 2006; Vol. 2.
Yoshida, H.; Inaba, K.; Sato, N. X-ray diffraction reciprocal space mapping study of the thin film phase of pentacene. Appl. Phys. Lett. 2007, 90, 181930, 10.1063/1.2736193
Gbabode, G.; Dumont, N.; Quist, F.; Schweicher, G.; Moser, A.; Viville, P.; Lazzaroni, R.; Geerts, Y. H. Substrate-Induced Crystal Plastic Phase of a Discotic Liquid Crystal. Adv. Mater. 2012, 24, 658-662, 10.1002/adma.201103739
Blagden, N.; de Matas, M.; Gavan, P. T.; York, P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv. Drug Delivery Rev. 2007, 59, 617-630, 10.1016/j.addr.2007.05.011
Ehmann, H. M.; Werzer, O. Surface mediated structures: stabilization of metastable polymorphs on the example of paracetamol. Cryst. Growth Des. 2014, 14, 3680-3684, 10.1021/cg500573e
Zhang, K.; Fellah, N.; Shtukenberg, A. G.; Fu, X.; Hu, C.; Ward, M. D. Discovery of new polymorphs of the tuberculosis drug isoniazid. CrystEngComm 2020, 22, 2705-2708, 10.1039/D0CE00440E
Cruz-Cabeza, A. J.; Bernstein, J. Conformational polymorphism. Chem. Rev. 2014, 114, 2170-2191, 10.1021/cr400249d
Nyman, J.; Day, G. M. Static and lattice vibrational energy differences between polymorphs. CrystEngComm 2015, 17, 5154-5165, 10.1039/C5CE00045A
Salzmann, I.; Nabok, D.; Oehzelt, M.; Duhm, S.; Moser, A.; Heimel, G.; Puschnig, P.; Ambrosch-Draxl, C.; Rabe, J. P.; Koch, N. Structure solution of the 6, 13-pentacenequinone surface-induced polymorph by combining X-ray diffraction reciprocal-space mapping and theoretical structure modeling. Cryst. Growth Des. 2011, 11, 600-606, 10.1021/cg1015143
Schiefer, S.; Huth, M.; Dobrinevski, A.; Nickel, B. Determination of the crystal structure of substrate-induced pentacene polymorphs in fiber structured thin films. J. Am. Chem. Soc. 2007, 129, 10316-10317, 10.1021/ja0730516
Pithan, L.; Nabok, D.; Cocchi, C.; Beyer, P.; Duva, G.; Simbrunner, J.; Rawle, J.; Nicklin, C.; Schäfer, P.; Draxl, C. Molecular structure of the substrate-induced thin-film phase of tetracene. J. Chem. Phys. 2018, 149, 144701, 10.1063/1.5043379
Weissbuch, I.; Lahav, M.; Leiserowitz, L. Toward stereochemical control, monitoring, and understanding of crystal nucleation. Cryst. Growth Des. 2003, 3, 125-150, 10.1021/cg0200560
Resel, R.; Koch, N.; Meghdadi, F.; Leising, G.; Athouel, L.; Froyer, G.; Hofer, F. A polymorph crystal structure of hexaphenyl observed in thin films. Cryst. Res. Technol. 2001, 36, 47-54, 10.1002/1521-4079(200101)36:1<47::AID-CRAT47>3.0.CO;2-X
Mänz, A.; Breuer, T.; Witte, G. Epitaxial Tetrathiafulvalene-Tetracyanoquinodimethane Thin Films on KCl (100): New Preparation Methods and Observation of Interface-Mediated Thin Film Polymorph. Cryst. Growth Des. 2015, 15, 395-403, 10.1021/cg501484p
Yang, J.; Erriah, B.; Hu, C. T.; Reiter, E.; Zhu, X.; López-Mejías, V.; Carmona-Sepúlveda, I. P.; Ward, M. D.; Kahr, B. A deltamethrin crystal polymorph for more effective malaria control. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 26633-26638, 10.1073/pnas.2013390117
Jones, A. O.; Geerts, Y. H.; Karpinska, J.; Kennedy, A. R.; Resel, R.; Röthel, C.; Ruzié, C.; Werzer, O.; Sferrazza, M. Substrate-induced phase of a [1] benzothieno [3, 2-b] benzothiophene derivative and phase evolution by aging and solvent vapor annealing. ACS Appl. Mater. Interfaces 2015, 7, 1868-1873, 10.1021/am5075908
Lercher, C.; Röthel, C.; Roscioni, O. M.; Geerts, Y. H.; Shen, Q.; Teichert, C.; Fischer, R.; Leising, G.; Sferrazza, M.; Gbabode, G. Polymorphism of dioctyl-terthiophene within thin films: The role of the first monolayer. Chem. Phys. Lett. 2015, 630, 12-17, 10.1016/j.cplett.2015.04.027
Mannsfeld, S. C.; Tang, M. L.; Bao, Z. Thin film structure of triisopropylsilylethynyl-functionalized pentacene and tetraceno [2, 3-b] thiophene from grazing incidence X-Ray diffraction. Adv. Mater. 2011, 23, 127-131, 10.1002/adma.201003135
Krauss, T. N.; Barrena, E.; Zhang, X. N.; De Oteyza, D. G.; Major, J.; Dehm, V.; Würthner, F.; Cavalcanti, L. P.; Dosch, H. Three-dimensional molecular packing of thin organic films of PTCDI-C8 determined by surface X-ray diffraction. Langmuir 2008, 24, 12742-12744, 10.1021/la8030182
Nabok, D.; Puschnig, P.; Ambrosch-Draxl, C.; Werzer, O.; Resel, R.; Smilgies, D.-M. Crystal and electronic structures of pentacene thin films from grazing-incidence x-ray diffraction and first-principles calculations. Phys. Rev. B 2007, 76, 235322 10.1103/PhysRevB.76.235322
Wu, J.; Spence, J. Electron diffraction of thin-film pentacene. J. Appl. Crystallogr. 2004, 37, 78-81, 10.1107/S0021889803025093
Chou, W.-Y.; Chang, M.-H.; Cheng, H.-L.; Lee, Y.-C.; Chang, C.-C.; Sheu, H.-S. New pentacene crystalline phase induced by nanoimprinted polyimide gratings. J. Phys. Chem. C 2012, 116, 8619-8626, 10.1021/jp300043j
Dimitrakopoulos, C.; Brown, A.; Pomp, A. Molecular beam deposited thin films of pentacene for organic field effect transistor applications. J. Appl. Phys. 1996, 80, 2501-2508, 10.1063/1.363032
Bouchoms, I.; Schoonveld, W.; Vrijmoeth, J.; Klapwijk, T. Morphology identification of the thin film phases of vacuum evaporated pentacene on SiO2 substrates. Synth. Met. 1999, 104, 175-178, 10.1016/S0379-6779(99)00050-8
Simões, R. G.; Salzmann, I.; Resel, R.; Röthel, C.; Geerts, Y. H. Stabilization of the Metastable Form I of Piracetam by Crystallization on Silicon Oxide Surfaces. Cryst. Growth Des. 2018, 18, 4123-4129, 10.1021/acs.cgd.8b00533
Christian, P.; Röthel, C.; Tazreiter, M.; Zimmer, A.; Salzmann, I.; Resel, R.; Werzer, O. Crystallization of carbamazepine in proximity to its precursor iminostilbene and a silica surface. Cryst. Growth Des. 2016, 16, 2771-2778, 10.1021/acs.cgd.6b00090
Jones, A. O.; Röthel, C.; Lassnig, R.; Bedoya-Martínez, O.; Christian, P.; Salzmann, I.; Kunert, B.; Winkler, A.; Resel, R. Solution of an elusive pigment crystal structure from a thin film: a combined X-ray diffraction and computational study. CrystEngComm 2017, 19, 1902-1911, 10.1039/C7CE00227K
Yang, J.; Hu, C. T.; Zhu, X.; Zhu, Q.; Ward, M. D.; Kahr, B. DDT polymorphism and the lethality of crystal forms. Angew. Chem. Int. Ed. 2017, 129, 10299-10303, 10.1002/ange.201703028
Mali, K. S.; Pearce, N.; De Feyter, S.; Champness, N. R. Frontiers of supramolecular chemistry at solid surfaces. Chem. Soc. Rev. 2017, 46, 2520-2542, 10.1039/C7CS00113D
Goronzy, D. P.; Ebrahimi, M.; Rosei, F.; Arramel; Fang, Y.; De Feyter, S.; Tait, S. L.; Wang, C.; Beton, P. H.; Wee, A. T. Supramolecular assemblies on surfaces: nanopatterning, functionality, and reactivity. ACS Nano 2018, 12, 7445-7481, 10.1021/acsnano.8b03513
Tahara, K.; Furukawa, S.; Uji-i, H.; Uchino, T.; Ichikawa, T.; Zhang, J.; Mamdouh, W.; Sonoda, M.; De Schryver, F. C.; De Feyter, S. Two-dimensional porous molecular networks of dehydrobenzo [12] annulene derivatives via alkyl chain interdigitation. J. Am. Chem. Soc. 2006, 128, 16613-16625, 10.1021/ja0655441
Elemans, J. A.; Lei, S.; De Feyter, S. Molecular and Supramolecular Networks on Surfaces: From Two-Dimensional Crystal Engineering to Reactivity. Angew. Chem., Int. Ed. 2009, 48, 7298-7332, 10.1002/anie.200806339
Gutzler, R.; Fu, C.; Dadvand, A.; Hua, Y.; MacLeod, J. M.; Rosei, F.; Perepichka, D. F. Halogen bonds in 2D supramolecular self-assembly of organic semiconductors. Nanoscale 2012, 4, 5965-5971, 10.1039/c2nr31648j
Kim, M. K.; Xue, Y.; Pašková, T.; Zimmt, M. B. Monolayer patterning using ketone dipoles. Phys. Chem. Chem. Phys. 2013, 15, 12466-12474, 10.1039/c3cp50808k
Steeno, R.; Minoia, A.; Gimenez-Lopez, M. C.; Blunt, M. O.; Champness, N. R.; Lazzaroni, R.; Mali, K. S.; De Feyter, S. Molecular dopant determines the structure of a physisorbed self-assembled molecular network. Chem. Commun. 2021, 57, 1454-1457, 10.1039/D0CC07338E
Mali, K. S.; Adisoejoso, J.; Ghijsens, E.; De Cat, I.; De Feyter, S. Exploring the complexity of supramolecular interactions for patterning at the liquid-solid interface. Acc. Chem. Res. 2012, 45, 1309-1320, 10.1021/ar200342u
MacLeod, J. M.; Ivasenko, O.; Fu, C.; Taerum, T.; Rosei, F.; Perepichka, D. F. Supramolecular ordering in oligothiophene-fullerene monolayers. J. Am. Chem. Soc. 2009, 131, 16844-16850, 10.1021/ja906206g
Korolkov, V. V.; Svatek, S. A.; Summerfield, A.; Kerfoot, J.; Yang, L.; Taniguchi, T.; Watanabe, K.; Champness, N. R.; Besley, N. A.; Beton, P. H. van der Waals-induced chromatic shifts in hydrogen-bonded two-dimensional porphyrin arrays on boron nitride. ACS Nano 2015, 9, 10347-10355, 10.1021/acsnano.5b04443
Blunt, M. O.; Russell, J. C.; del Carmen Gimenez-Lopez, M.; Taleb, N.; Lin, X.; Schröder, M.; Champness, N. R.; Beton, P. H. Guest-induced growth of a surface-based supramolecular bilayer. Nat. Chem. 2011, 3, 74-78, 10.1038/nchem.901
Hamamoto, N.; Sonoda, H.; Sumimoto, M.; Hori, K.; Fujimoto, H. Theoretical study on crystal polymorphism and electronic structure of lead (ii) phthalocyanine using model dimers. RSC Adv. 2017, 7, 8646-8653, 10.1039/C6RA27269J
Kumar, T. M.; Achar, B. Synthesis and characterization of lead phthalocyanine and its derivatives. J. Organomet. Chem. 2006, 691, 331-336, 10.1016/j.jorganchem.2005.08.052
Yoshida, Y.; Tanigaki, N.; Yase, K. Evaluation of Thin Films of Functional Organic Materials by Total Reflection X-Ray Diffraction. Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 1996, 280, 271-276, 10.1080/10587259608040342
Collins, R.; Belghachi, A. Structural properties of lead phthalocyanine thin films. Mater. Lett. 1989, 8, 349-352, 10.1016/0167-577X(89)90005-0
Heilmann, A.; Müller, M.; Hamann, C.; Lantto, V.; Torvela, H. Gas sensitivity measurements on NO2 sensors based on lead phthalocyanine thin films. Sens. Actuators, B 1991, 4, 511-513, 10.1016/0925-4005(91)80160-L
Strohmaier, R.; Ludwig, C.; Petersen, J.; Gompf, B.; Eisenmenger, W. Scanning tunneling microscope investigations of lead-phthalocyanine on MoS2. J. Vac. Sci. Technol. B 1996, 14, 1079-1082, 10.1116/1.588404
Nguyen, T. N.; Aprojanz, J.; Jäger, M.; Nguyen, T. H.; Tegenkamp, C. Noninvasive coupling of PbPc monolayers to epitaxial graphene on SiC (0001). Surf. Sci. 2019, 686, 45-51, 10.1016/j.susc.2019.04.003
Ukei, K. Lead phthalocyanine. Acta Crystallogr. B 1973, 29, 2290-2292, 10.1107/S0567740873006497
Iyechika, Y.; Yakushi, K.; Ikemoto, I.; Kuroda, H. Structure of lead phthalocyanine (triclinic form). Acta Crystallogr. B 1982, 38, 766-770, 10.1107/S056774088200404X
Schrode, B.; Pachmajer, S.; Dohr, M.; Röthel, C.; Domke, J.; Fritz, T.; Resel, R.; Werzer, O. GIDVis: a comprehensive software tool for geometry-independent grazing-incidence X-ray diffraction data analysis and pole-figure calculations. J. Appl. Crystallogr. 2019, 52, 683-689, 10.1107/S1600576719004485
Kainz, M. P.; Legenstein, L.; Holzer, V.; Hofer, S.; Kaltenegger, M.; Resel, R.; Simbrunner, J. GIDInd: an automated indexing software for grazing-incidence X-ray diffraction data. J. Appl. Crystallogr. 2021, 54, 1256-1267, 10.1107/S1600576721006609
Simbrunner, J.; Simbrunner, C.; Schrode, B.; Röthel, C.; Bedoya-Martinez, N.; Salzmann, I.; Resel, R. Indexing of grazing-incidence X-ray diffraction patterns: the case of fibre-textured thin films. Acta Crystallogr. A 2018, 74, 373-387, 10.1107/S2053273318006629
Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter. 2002, 14, 2745, 10.1088/0953-8984/14/11/302
Troullier, N.; Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43, 1993, 10.1103/PhysRevB.43.1993
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787-1799, 10.1002/jcc.20495
Horcas, I.; Fernández, R.; Gomez-Rodriguez, J.; Colchero, J.; Gómez-Herrero, J.; Baro, A. WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705 10.1063/1.2432410
Mayo, S. L.; Olafson, B. D.; Goddard, W. A. DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 1990, 94, 8897-8909, 10.1021/j100389a010
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H., et al., Gaussian 16 Rev. C.01. 2016.
Samoletov, A. A.; Dettmann, C. P.; Chaplain, M. A. Thermostats for "slow" configurational modes. J. Stat. Phys. 2007, 128, 1321-1336, 10.1007/s10955-007-9365-2
Mali, K. S.; Zöphel, L.; Ivasenko, O.; Müllen, K.; De Feyter, S. Manifestations of Non-Planar Adsorption Geometries of Lead Pyrenocyanine at the Liquid-Solid Interface. Chem.-Asian J. 2013, 8, 2497-2505, 10.1002/asia.201300689
Lackinger, M.; Hietschold, M. Determining adsorption geometry of individual tin-phthalocyanine molecules on Ag (111) - a STM study at submonolayer coverage. Surf. Sci. 2002, 520, L619-L624, 10.1016/S0039-6028(02)02269-0
Sirtl, T.; Song, W.; Eder, G.; Neogi, S.; Schmittel, M.; Heckl, W. M.; Lackinger, M. Solvent-dependent stabilization of metastable monolayer polymorphs at the liquid-solid interface. ACS Nano 2013, 7, 6711-6718, 10.1021/nn4014577
Kashimoto, Y.; Yonezawa, K.; Meissner, M.; Gruenewald, M.; Ueba, T.; Kera, S.; Forker, R.; Fritz, T.; Yoshida, H. The evolution of intermolecular energy bands of occupied and unoccupied molecular states in organic thin films. J. Phys. Chem. C 2018, 122, 12090-12097, 10.1021/acs.jpcc.8b02581
Kera, S.; Fukagawa, H.; Kataoka, T.; Hosoumi, S.; Yamane, H.; Ueno, N. Spectroscopic evidence of strong π-πinterorbital interaction in a lead-phthalocyanine bilayer film attributed to the dimer nanostructure. Phys. Rev. B 2007, 75, 121305 10.1103/PhysRevB.75.121305
Yamane, H.; Honda, H.; Fukagawa, H.; Ohyama, M.; Hinuma, Y.; Kera, S.; Okudaira, K.; Ueno, N. HOMO-band fine structure of OTi-and Pb-phthalocyanine ultrathin films: effects of the electric dipole layer. J. Electron Spectrosc. Relat. Phenom. 2004, 137, 223-227
Fu, C.; Lin, H.-p.; Macleod, J. M.; Krayev, A.; Rosei, F.; Perepichka, D. F. Unravelling the self-assembly of hydrogen bonded NDI semiconductors in 2D and 3D. Chem. Mater. 2016, 28, 951-961, 10.1021/acs.chemmater.5b04706