Photoluminescence; Raman/Brillouin microscopy; Selenium; Zeolite single crystals; Brillouin microscopy; Concentration ratio; Large cavities; Loading density; Optical study; Polarization orientation; Raman/brillouin microscopy; Ring clusters; Unit cells; Zeolite single crystal; Chemistry (all); Materials Science (all); Condensed Matter Physics; Mechanics of Materials; General Materials Science; General Chemistry
Abstract :
[en] Recently, LTA-Se(1–8) samples with 1–8 Se atoms per cavity (simplified unit cell, large cavity + sodalite cage) obtained via adsorption at the temperature of ∼450 °C were reported. It was shown that single Se8 or single Se12 ring are formed in the large LTA cavities, Se8/Se12 ring concentration ratio decreasing with an increase in the Se loading density. Contrary, in the present work, using Se vapour adsorption at ∼550 °C, we succeeded in encapsulation of ∼17 Se atoms per cavity (LTA-Se(17)) with a significant increase in the Se8/Se12 concentration ratio manifesting double Se8-ring cluster formation in the most of the LTA large cavities, which is a step towards cluster crystal fabrication. According to our polarization/orientation Raman spectroscopic study of LTA-Se(17) single crystals, the orientations of the Se8 and Se12 appeared to be similar to those in previously investigated LTA-Se(1–8). Importantly, luminescent Se2− anions, oriented along the LTA 4-fold axes and located in the sodalite cages, are detected via Raman polarization/orientation dependencies of LTA-Se(17). Bright Se2− light emission with a maximum at ∼1.56 eV and vibronic structure is observed in the 1.3–1.8 eV spectral range. We show that the anions experience a compression in LTA which is slightly relaxing with a decrease in temperature producing an anomalous Raman band downshift. The compression of Se2− in LTA is weaker/stronger than that in sodalite/cancrinite, luminescence band photon energy depending on its strength. High concentration of regularly arranged Se2− in LTA suggests considering LTA-Se(17) as an important novel light-emitting material.
Disciplines :
Electrical & electronics engineering Physics
Author, co-author :
Poborchii, Vladimir V. ; National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
Petranovskii, Vitalii P.; Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Mexico
Glukhov, Igor A. ; Lab-STICC (UMR CNRS 6285), École Nationale d'Ingénieurs de Brest, France ; Ulyanovsk State University, Ulyanovsk, Russian Federation
Fotiadi, Andrei ; Université de Mons - UMONS > Faculté Polytechnique > Service d'Electromagnétisme et Télécommunications ; Optoelectronics and Measurement Techniques unit, University of Oulu, Oulu, Finland
Language :
English
Title :
Optical study of oriented double-Se8-ring clusters and luminescent Se2− anions in LTA at extremely high selenium loading density
Horizon 2020 H2020 Marie Skłodowska-Curie Actions Horizon 2020 European Innovation Council Fast Track to Innovation Ministry of Education and Science of the Russian Federation Union Européenne
Funding number :
H2020-MSCA-IF-2020, #101028712
Funding text :
We thank G.-G. Lindner for SOD-Se and CAN-Se samples containing Se 2 − . I.A.G. kindly acknowledges for the support from Ministry of Science and Higher Education of the Russian Federation ( 075-15-2021-581 ). A.A.F. is supported by the European Union's Horizon 2020 research and innovation programme ( H2020-MSCA–IF–2020 , #101028712 ).
Smith, W., Effect of light on selenium during the passage of electric current. Nature, 7, 1873, 303, 10.1038/007303e0.
Berger, S.B., Enck, R.C., Scharfe, M.E., Springett, B.E., The application of selenium and its alloys to xerography. Gerlach, E., Grosse, P., (eds.) The Physics of Selenium and Tellurium, vol. 13, 1979, Springer Series in Solid-State Sciences, Springer, Berlin, Heidelberg, 256–266, 10.1007/978-3-642-81398-6_40.
Hadar, I., Song, T.-B., Ke, W., Kanatzidis, M.G., Modern processing and insights on selenium solar cells: the world's first photovoltaic device. Adv. Energy Mater., 2019, 1802766, 10.1002/aenm.201802766.
Zhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z., Zhang, S.-C., Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5 (2009), 438–442, 10.1038/nphys1270.
Mendes, T.C., Nguyen, C., Barlow, A.J., Cherepanov, P., Forsyth, M., Howlett, P.C., MacFarlane, D.R., A safe Li-Se battery in an ionic liquid-based electrolyte operating at 25-70 °C by using a N,S,O tri-doped mesoporous carbon host material. Sustain. Energy Fuel., 4, 2020, 10.1039/C9SE01074B.
Mal, J., Veneman, W.J., Nancharaiah, Y.V., van Hullebusch, E.D., Peijnenburg, W.J.G.M., Vijver, M.G., Lens, P.N.L., A comparison of fate and toxicity of selenite, biogenically and chemically synthesized selenium nanoparticles to zebrafish (Danio rerio) embryogenesis. Nanotoxicology 11 (2017), 87–97, 10.1080/17435390.2016.1275866.
Khalid, A., Tran, P.A., Norello, R., Simpson, D.A., O'Connor, A.J., Tomljenovic-Hanic, S., Intrinsic fluorescence of selenium nanoparticles for cellular imaging applications. Nanoscale 8 (2016), 3376–3385, 10.1039/c5nr08771f.
Piacenza, E., Presentato, A., Heyne, B., Turner, R.J., Tunable photoluminescence properties of selenium nanoparticles: biogenic versus chemogenic synthesis. Nanophotonics 9 (2020), 3615–3628, 10.1515/nanoph-2020-0239.
Alzeer, M.I.M., Nguyen, H., Fabritius, T., Sreenivasan, H., Telkki, V.-V., Kantola, A.M., Cheeseman, C., Illikainen, M., Kinnunen, P., On the hydration of synthetic aluminosilicate glass as a sole cement precursor. Cement Concr. Res., 159, 2022, 106859, 10.1016/j.cemconres.2022.106859 2022.
Sanchez-Valle, C., Sinogeikin, S.V., Lethbridge, Z.A.D., Walton, R.I., Smith, C.W., Evans, K.E., Bass, J.D., Brillouin scattering study on the single-crystal elastic properties of natrolite and analcime zeolites. J. Appl. Phys., 98, 2005, 053508, 10.1063/1.2014932.
Poborchii, V.V., Ivanova, M.S., Petranovskii, V.P., Barnakov, Y.A., Kasuya, A., Nishina, Y., Raman and absorption spectra of the zeolites A and X containing selenium and tellurium in the nanopores. Mater. Sci. Eng. 217/218 (1996), 129–134, 10.1016/S0921-5093(96)10365-8.
Poborchii, V.V., Fokin, A.V., Raman and optical absorption spectra of oriented Se8 and Se12 rings formed in zeolites: dependence on the Se loading density. Microporous Mesoporous Mater., 338, 2022, 111954, 10.1016/j.micromeso.2022.111954.
Poborchii, V.V., Raman spectra of sulfur, selenium or tellurium clusters confined in nano-cavities of zeolite A. Solid State Commun. 107 (1998), 513–518, 10.1016/S0038-1098(98)00205-1.
Poborchii, V.V., Raman microprobe polarization measurements as a tool for studying the structure and orientation of molecules and clusters incorporated into cubic zeolites: S8 and Se12 rings in zeolite A. J. Chem. Phys. 114 (2001), 2707–2717, 10.1063/1.1339268.
Jahns, R.H., Clerici solution for the specific gravity determination of small mineral grains. Am. Mineral. 24 (1939), 116–122.
Bogomolov, V.N., Liquids in ultrathin channels (Filament and cluster crystals). Sov. Phys. Usp. 21 (1978), 77–83, 10.1070/PU1978v021n01ABEH005510.
Stucky, G.D., MacDougall, J.E., Quantum confinement and host/guest chemistry: probing a new dimension. Science 247 (1990), 669–678, 10.1126/science.247.4943.669.
Schlaich, H., Lindner, G.-G., Feldmann, J., Go1bel, E.O., Reinen, D., Optical properties of Se2- and Se2 color centers in the red selenium ultramarine with the sodalite structure. Inorg. Chem. 39 (2000), 2740–2746.
Poborchii, V.V., Lindner, G.-G., Sato, M., Selenium dimers and linear chains in one-dimensional cancrinite nanochannels: structure, dynamics, and optical properties. J. Chem. Phys. 116 (2002), 2609–2617, 10.1063/1.1434950.
Goldbach, A., Grimsditch, M., Iton, L., Saboungi, M.-L., Photoinduced Formation of selenium molecules in zeolites: a resonant Raman spectroscopy study. J. Phys. Chem. B 101 (1997), 330–334, 10.1021/jp962563w.
Bogomolov, V.N., Petranovskii, V.P., Poborchii, V.V., Kholodkevich, S.V., Absorption, Raman and ESR spectra and the dielectric permittivity of NaA-S cluster crystals. Sov. Phys. Solid State 25 (1983), 1415–1417.
Bogomolov, V.N., Efimov, A.N., Ivanova, M.S., Poborchii, V.V., Romanov, S.G., Smolin, Y.I., Shepelev, Y.F., Structure and optical properties of a one-dimensional chain of selenium atoms in a cancrinite channel. Sov. Phys. Solid State 34 (1992), 916–919.
Poborchii, V.V., Sato, M., Shchukarev, A.V., Linear dimerized Se chains in cancrinite nanochannels: x-ray diffraction and photoelectron spectra. Solid State Commun. 103 (1997), 649–654, 10.1016/S0038-1098(97)00272-X.
Murata, H., Kishigami, T., Kato, R., Time-resolved study of photoluminescence from Se2- molecule in KI. J. Phys. Soc. Jap 59 (1990), 506–515, 10.1143/JPSJ.59.506.
Yamagida, R.Y., Amaro, A.A., Seff, K., Redetermination of the crystal structure of dehydrated zeolite 4A. J. Phys. Chem. 77 (1973), 805–809, 10.1021/j100625a014.
Bogomolov, V.N., Lutsenko, E.L., Petranovskii, V.P., Kholodkevich, S.V., Absorption spectra of three-dimensionally-ordered system of 12 Å particles. JETP Lett. 23 (1976), 482–484.
Bogomolov, V.N., Poborchii, V.V., Kholodkevich, S.V., Shagin, S.I., Electronic and vibrational spectra of 10-Å selenium clusters; cluster model of amorphous selenium. JETP Lett. 38 (1983), 532–535.
Bogomolov, V.N., Poborchii, V.V., Kholodkevich, S.V., Size effects in the vibrational spectrum of 10-Å selenium particles. JETP Lett. 42 (1985), 517–520.
Parise, J.B., MacDougal1, J.E., Herron, N., Farlee, R., Sleight, A.W., Wang, Y., Bein, T., Moiler, K., Moroney, L.M., Characterization of Se-loaded molecular sieves A, X, AlPO-5 and mordenite. Inorg. Chem. 27 (1988), 221–228, 10.1021/ic00275a002.
Nozue, Y., Kodaira, T., Terasaki, 0, Yamazakii, K., Goto, T., Watanabe, D., Thomas, J.M., Absorption spectra of selenium clusters and chains incorporated into zeolites. J. Phys. Condens. Matter 2 (1990), 5209–5217, 10.1088/0953-8984/2/23/011.
Kim, H.S., Park, J.S., Lim, W.T., Structural study of selenium sorption complex of fully dehydrated, partially Ca2+-exchanged zeolite A. Korean J. Mineral. Petrol. 33 (2020), 251–258, 10.22807/KJMP.2020.33.3.251.