Abdu, N., Abdullahi, A.A., Abdulkadir, A., Heavy metals and soil microbes. Environ. Chem. Lett. 15 (2017), 65–84.
Albuquerque, L., Franc, L., Rainey, F.A., Schumann, P., Fernanda Nobre, M., da Costad, M.S., Gaiella occulta gen. nov., sp. nov., a novel representative of a deep branching phylogenetic lineage within the class Actinobacteria and proposal of Gaiellaceae fam. nov. and Gaiellales ord. nov. Syst. Appl. Microbiol 34 (2011), 595–599.
Arenas, F.A., Pugin, B., Henriquez, N.A., Arenas-Salinas, M.A., Diaz-Vasquez, W.A., Pozo, M.F., et al. Isolation, identification and characterization of highly tellurite-resistant, tellurite-reducing bacteria from Antarctica. Polar Sci. 8 (2014), 40–52, 10.1016/j.polar.2014.01.001.
Bagade, A.V., et al. Characterization of roseomonas and nocardioides spp. for arsenic transformation. J. Hazard Mater. 318 (2016), 742–750, 10.1016/j.jhazmat.2016.07.062.
Bai, Y., Zhou, X., Smith, D.L., Enhanced soybean plant growth resulting from coinoculation of bacillus strains with bradyrhizobium japonicum. Crop Sci. 43 (2003), 1774–1781, 10.2135/cropsci2003.1774.
Baker, A.J.M., Ernst, W.H.O., Van Der Ent, A., Malaisse, F., Ginocchio, R., Metallophytes: the unique biological resource, its ecology and conservational status in Europe, central Africa and Latin America. Batty, L.C., Hallberg, K.B., (eds.) Ecology of Industrial Pollution, 2010, Cambridge University Press, Cambridge, 7–40, 10.1017/CBO9780511805561.003.
Barns, S.M., Cain, E.C., Sommerville, L., Kuske, C.R., Acidobacteria Phylum Sequences in Uranium-Contaminated Subsurface Sediments Greatly Expand the Known Diversity within the Phylum. Appl. Environ. Microbiol 73 (2007), 3113–3116.
Bashan, Y., de-Bashan, L.E., How the Plant Growth-Promoting Bacterium Azospirillum Promotes Plant Growth—A Critical Assessment. Advances in Agronomy, Vol 108, 2010, Elsevier, 77–136, 10.1016/S0065-2113(10)08002-8.
Beattie, R.E., Henke, W., Campa, M.F., Hazen, T.C., McAliley, L.R., Campbell, J.H., Variation in microbial community structure correlates with heavy-metal contamination in soils decades after mining ceased. Soil Biol. Biochem 126 (2018), 57–63, 10.1016/j.soilbio.2018.08.011.
Berg, B., Ekbohm, G., Soderstrom, B., Staaf, H., Reduction of decomposition rates of scots pine needle litter due to heavy-metal pollution. Water Air Soil Pollut. 59 (1991), 165–177.
Bert, V., Macnair, M.R., De Laguerie, P., Saumitou-Laprade, P., Petit, D., Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae). N. Phytol. 146 (2000), 225–233.
Bertin, P.N., Heinrich-Salmeron, A., Pelletier, E., Goulhen-Chollet, F., Arsène-Ploetze, F., Gallien, S., et al. Metabolic diversity among main microorganisms inside an arsenic-rich ecosystem revealed by meta- and proteo-genomics. ISME J. 5 (2011), 1735–1747, 10.1038/ismej.2011.51.
Bianucci, E., Fabra, A., Castro, S., Cadmium Accumulation and Tolerance in Bradyrhizobium spp. (Peanut Microsymbionts). Curr. Microbiol 62 (2011), 96–100, 10.1007/s00284-010-9675-5.
Buchfink, B., Reuter, K., Drost, H.G., Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18 (2021), 366–368.
Challacombe, J.F., Eichorst, S.A., Hauser, L., Land, M., Xie, G., Kuske, C.R., Biological consequences of ancient gene acquisition and duplication in the large genome of Candidatus Solibacter usitatus Ellin6076. PLoS ONE, 6(9), 2011, e24882, 10.1371/journal.pone.0024882.
Chen, M., Li, Y., Zhang, L., Wang, J., Zheng, C., Zhang, X., Analysis of gene expression provides insights into the mechanism of cadmium tolerance in acidithiobacillus ferrooxidans. Curr. Microbiol 70 (2015), 290–297, 10.1007/s00284-014-0710-9.
Dubey, R.K., Tripathi, V., Prabha, R., Chaurasia, R., Pratap Singh, D., Rao, C.S., et al. Metatranscriptomics and metaproteomics for microbial Communities Profiling. Springer Briefs in Environmental Science, Unravelling the Soil Microbiome, 2020, Springer, 51–68.
Duchow, E., Douglas, H.C., Rhodomicrobium vannielii, a new photoheterotrophic bacterium. J. Bacteriol. 58 (1949), 409–416.
Edgar R.C. (2016) UCHIME2: improved chimera prediction for amplicon sequencing. bioRxiv. doi: https://doi.org/10.1101/074252.
Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., Knight, R., UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:16 (2011), 2194–2200, 10.1093/bioinformatics/btr381.
Epelde, L., Becerril, J.M., Barrutia, O., Gonzalez-Oreja, J.A., Garbisu, 5, Interactions between plant and rhizosphere microbial communities in a metalliferous soil. Environ. Pollut. 158 (2010), 1576–1583.
Fajardo, C., Costa, G., Nande, M., Botias, P., Garcia-Cantalejo, J., Martin, M., Pb, Cd, and Zn soil contamination: Monitoring functional and structural impacts on the microbiome. Appl. Soil Ecol. 135 (2019), 56–64, 10.1016/j.apsoil.2018.10.022.
Fang, L., Ju, W., Yang, C., Duan, C., Cui, Y., Han, F., Shen, G., Zhang, C., Application of signaling molecules in reducing metal accumulation in alfalfa and alleviating metal-induced phytotoxicity in Pb/Cd-contaminated soil. Ecotox Environ. Saf., 182, 2019, 109459.
Fortin, N., Beaumier, D., Lee, K., Greer, C.W., Soil washing improves the recovery of total community DNA from polluted and high organic content sediments. J. Microbiol. Methods 56:2 (2004), 181–191, 10.1016/j.mimet.2003.10.006.
Gans, J., Wolinsky, M., Dunbar, J., Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309 (2005), 1387–1390.
Géron, A., Werner, J., Wattiez, R., Lebaron, P., Matallana-Surget, S., Deciphering the Functioning of Microbial Communities: Shedding Light on the Critical Steps in Metaproteomics. Front. Microbiol., 10, 2019, 2395, 10.3389/fmicb.2019.02395.
Gillan, D., Van Houdt, R., The impact of metal contamination on soil microbial community dynamics. van Elsas, J.D., Trevors, J.T., Soares Rosado, A., Nannipieri, P., (eds.) Modern Soil Microbiology, Third edition., 2019, CRC Press, Boca Raton, 403–419.
Gillan, D.C., Metal resistance systems in cultivated bacteria: are they found in complex communities?. Curr. Opin. Biotechnol. 38 (2016), 123–130, 10.1016/j.copbio.2016.01.012.
Gillan, D.C., Roosa, S., Kunath, B., Billon, G., Wattiez, R., The long-term adaptation of bacterial communities in metal-contaminated sediments: a metaproteogenomic study: bacteria in metal-contaminated sediments. Environ. Microbiol 17 (2015), 1991–2005, 10.1111/1462-2920.12627.
Gołębiewski, M., Deja-Sikora, E., Cichosz, M., Tretyn, A., Wrobel, B., 16S rDNA pyrosequencing analysis of bacterial community in heavy metals polluted soils. Microb. Ecol. 67 (2014), 635–647, 10.1007/s00248-013-0344-7.
Guo, H., Nasira, M., Lva, J., Daia, Y., Gao, J., Understanding the variation of microbial community in heavy metals contaminated soil using high throughput sequencing. Ecotox Environ. Saf. 144 (2017), 300–306.
Guo, W.X., Shu, D., Chen, H.Y., Li, A.J., Wang, H., Xiao, G.M., et al. Study on the structure and property of lead tellurium alloy as the positive grid of lead-acid batteries. J. Alloy. Compd. Volume 475:Issues 1–2 (2009), 102–109.
Han, J.I., Choi, H.K., Lee, S.W., Orwin, P.M., Kim, J., LaRoe, S.L., et al. Complete Genome Sequence of the Metabolically Versatile Plant Growth-Promoting Endophyte Variovorax paradoxus S110. J. Bacteriol. 193 (2011), 1183–1190, 10.1128/JB.00925-10.
Hao, X., Xie, P., Zhu, Y.G., Taghavi, S., Wei, G., Rensing, C., Copper tolerance mechanisms of mesorhizobium amorphae and its role in aiding phytostabilization by robinia pseudoacacia in copper contaminated soil. Environ. Sci. Technol. 49 (2015), 2328–2340, 10.1021/es504956a.
Hu, X., Wang, J., Lv, Y., Liu, X., Zhong, J., Cui, X., et al. Effects of heavy metals/metalloids and soil properties on microbial communities in farmland in the vicinity of a metals smelter. Front. Microbiol., 12, 2021, 707786, 10.3389/fmicb.2021.707786.
Huber, K.J., Geppert, A.M., Groß, U., Luckner, M., Wanner, G., Cooper, P., et al. Aridibacter nitratireducens sp. nov., a member of the family Blastocatellaceae, class Blastocatellia, isolated from an African soil. Int J. Syst. Evol. Microbiol 67 (2017), 4487–4493, 10.1099/ijsem.0.002318.
Hupert-Kocurek, K., Saczyńska, A., Piotrowska-Seget, Z., Cadmium increases catechol 2,3-dioxygenase activity in Variovorax sp. 12S, a metal-tolerant and phenol-degrading strain. Antonie Van. Leeuwenhoek 104 (2013), 845–853, 10.1007/s10482-013-9997-y.
Jansson, J.K., Hofmockel, K.S., The soil microbiome — from metagenomics to metaphenomics. Curr. Opin. Microbiol 43 (2018), 162–168, 10.1016/j.mib.2018.01.013.
Jia, S., Wang, Z., Zhang, X.X., Liu, B., Li, W., Cheng, S., Metagenomic analysis of cadmium and copper resistance genes in activated sludge of a tannery wastewater treatment plant. J. Environ. Biol. 34 (2013), 375–380.
Kaci, A., Petit, F., Lesueur, P., Boust, D., Vrel, A., Berthe, T., Distinct diversity of the czcA gene in two sedimentary horizons from a contaminated estuarine core. Environ. Sci. Pollut. Res 21 (2014), 10787–10802, 10.1007/s11356-014-3029-y.
Kim, B.R., Shin, J., Guevarra, R.B., Hyung Lee, J., Kim, D.W., Seol, K.H., Lee, J.H., Kim, H.B., Isaacson, R.E., Deciphering diversity indices for a better understanding of microbial communities. J. Microbiol Biotechnol. 27 (2017), 2089–2093.
Kim, S.J., Ahn, J.H., Weon, H.Y., Hong, S.B., Seok, S.J., Kim, J.S., Kwon, S.W., Niastella gongjuensis sp. nov., isolated from greenhouse soil. Int J. Syst. Evol. Microbiol 65 (2015), 3115–3118.
Lemoine, G., De l′importance des pelouses calaminaires d′Auby et notamment du Parc Peru. Bull. Soc. Bot. N. Fr. 65 (2012), 51–58.
Li, S., Zhao, B., Jin, M., Hu, L., Zhong, H., He, Z., A comprehensive survey on the horizontal and vertical distribution of heavy metals and microorganisms in soils of a Pb/Zn smelter. J. Hazard Mater., 400, 2020, 123255, 10.1016/j.jhazmat.2020.123255.
Li, X., Li, B., Jin, T., Chen, H., Zhao, G., Qin, X., Yang, Y., Xu, J., Rhizospheric microbiomics integrated with plant transcriptomics provides insight into the Cd response mechanisms of the newly identified Cd accumulator Dahlia pinnata. Front. Plant Sci., 13, 2022, 1091056, 10.3389/fpls.2022.1091056.
Li, X., Li, B., Zheng, Y., Luo, L., Qin, X., Yang, Y., Xu, J., Physiological and rhizospheric response characteristics to cadmium of a newly identified cadmium accumulator Coreopsis grandiflora Hogg. (Asteraceae). Ecotox Environ. Saf., 241, 2022, 113739.
Liu, J.L., Yao, J., Zhu, X., Zhou, D.L., Duran, R., Mihucz, V.G., Bashir, S., Hudson-Edwards, K.A., Metagenomic exploration of multi-resistance genes linked to microbial attributes in active nonferrous metal(loid) tailings. Environ. Pollut., 273, 2021, 115667.
Liu, Y., Gao, T., Wang, X., Fu, J., Zuo, M., Yang, Y., et al. Effects of heavy metals on bacterial community surrounding Bijiashan mining area located in northwest China. Open Life Sci. 17 (2022), 40–54.
Meyer, F., Paarmann, D., D'Souza, M., Olson, R., Glass, E.M., Kubal, M., et al. The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinforma., 9, 2008, 386, 10.1186/1471-2105-9-386.
Nguyen, T.T.H., Kikuchi, T., Tokunaga, T., Iyoda, S., Iguchi, A., Diversity of the tellurite resistance gene operon in Escherichia coli. Front. Microbiol., 12, 2021, 681175, 10.3389/fmicb.2021.681175.
Olenska, E., Imperato, V., Małek, W., Włostowski, T., Wójcik, M., Swiecicka, I., Vangronsveld, J., Thijs, S., Trifolium repens-Associated Bacteria as a Potential Tool to Facilitate Phytostabilization of Zinc and Lead Polluted Waste Heaps. Plants, 9, 2020, 1002, 10.3390/plants9081002.
Orłowska, E., Zubek, Sz, Jurkiewicz, A., Szarek-Łukaszewska, G., Turnau, K., Influence of restoration on arbuscular mycorrhiza of Biscutella laevigata L. (Brassicaceae) and Plantago lanceolata L. (Plantaginaceae) from calamine spoil mounds. Mycorrhiza 12 (2002), 153–160.
Pal, C., Bengtsson-Palme, J., Rensing, C., Kristiansson, E., Larsson, D.G.J., BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Res. 42 (2014), D737–D743.
Parada, A.E., Needham, D.M., Fuhrman, J.A., Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18 (2016), 1403–1414, 10.1111/1462-2920.13023.
Ramana, V.V., Raj, P.S., Tushar, L., Sasikala, C., Ramana, C.V., Rhodomicrobium udaipurense sp. nov., a psychrotolerant, phototrophic alphaproteobacterium isolated from a freshwater stream. Int J. Syst. Evol. Micro 63 (2013), 2684–2689.
Roosa, S., Wattiez, R., Prygiel, E., Lesven, L., Billon, G., Gillan, D.C., Bacterial metal resistance genes and metal bioavailability in contaminated sediments. Environ. Pollut. 189 (2014), 143–151, 10.1016/j.envpol.2014.02.031.
Salmi, A., Boulila, F., Heavy metals multi-tolerant Bradyrhizobium isolated from mercury mining region in Algeria. J. Environ. Manag., 289, 2021, 112547, 10.1016/j.jenvman.2021.112547.
Salvato, F., Hettich, R.L., Kleiner, M., Five key aspects of metaproteomics as a tool to understand functional interactions in host- associated microbiomes. PLoS Pathog., 17(2), 2021, e1009245.
Shakya, M., Lo, C.C., Chain, P.S.G., Advances and challenges in metatranscriptomic analysis. Front. Genet., 10, 2019, 904, 10.3389/fgene.2019.00904.
Sheik, C.S., Mitchel, T.W., Rizvi, F.Z., Rehman, Y., Faisal, M., Hasnain, S., et al. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure. PLoS One, 7, 2012, e40059.
Siebielec, S., Siebielec, G., Sugier, P., Wozniak, M., Grzadziel, J., Galazka, A., Stuczynski, T., Activity and diversity of microorganisms in root zone of plant species spontaneously inhabiting smelter waste piles. Molecules, 25, 2020, 5638, 10.3390/molecules25235638.
Singh, B.K., Quince, C., Macdonald, C.A., Khachane, A., Thomas, N., Al-Soud, W.A., et al. Loss of microbial diversity in soils is coincident with reductions in some specialized functions. Environ. Microbiol 16 (2014), 2408–2420.
Singh, S., Parihar, P., Singh, R., Singh, V.P., Prasad, S.M., Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics. Front. Plant Sci., 2016, 6, 10.3389/fpls.2015.01143.
Sowell, S.M., Wilhelm, L.J., Norbeck, A.D., Lipton, M.S., Nicora, C.D., Barofsky, D.F., et al. Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea. ISME J. 3 (2009), 93–105, 10.1038/ismej.2008.83.
Sujkowska-Rybkowska, M., Banasiewicz, J., Rekosz-Burlaga, H., Stepkowski, T., Anthyllis vulneraria and Lotus corniculatus on calamine heaps form nodules with Bradyrhizobium liaoningense-related strains harboring novel in Europe symbiotic nifD haplotypes. Appl. Soil Ecol., 151, 2020, 103539, 10.1016/j.apsoil.2020.103539.
Turner, R.J., Aharonowitz, Y., Weiner, J.H., Taylor, D.E., Glutathione is a target in tellurite toxicity and is protected by tellurite resistance determinants in Escherichia coli. Can. J. Microbiol. 47 (2001), 33–40, 10.1139/cjm-47-1-33.
Vezza, M.E., Olmos Nicotra, M.F., Agostini, E., Talano, M.A., Biochemical and molecular characterization of arsenic response from Azospirillum brasilense Cd, a bacterial strain used as plant inoculant. Environ. Sci. Pollut. Res 27 (2020), 2287–2300, 10.1007/s11356-019-06959-1.
Vidal, C., Chantreuil, C., Berge, O., Mauré, L., Escarré, J., Béna, G., et al. Mesorhizobium metallidurans sp. nov., a metal-resistant symbiont of Anthyllis vulneraria growing on metallicolous soil in Languedoc, France. Int J. Syst. Evol. Microbiol 59 (2009), 850–855, 10.1099/ijs.0.003327-0.
Vishnivetskaya, T.A., Mosher, J.J., Palumbo, A.V., Yang, Z.K., Podar, M., Brown, S.D., et al. Mercury and other heavy metals influence bacterial community structure in contaminated Tennessee streams. Appl. Environ. Microbiol 77 (2011), 302–311.
Walter, E.G., Taylor, D.E., Plasmid-mediated resistance to tellurite: Expressed and cryptic. Plasmid 27 (1992), 52–64, 10.1016/0147-619X(92)90006-V.
Wani, P.A., Khan, S., Zaidi, A., Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnol. Lett. 30 (2007), 159–163.
Ward, N.L., Challacombe, J.F., Janssen, P.H., Henrissat, B., Coutinho, P.M., Wu, M., et al. Three genomes from the phylum acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl. Environ. Microbiol 75 (2009), 2046–2056.
Werner, J., Géron, A., Kerssemakers, J., Matallana-Surget, S., mPies: a novel metaproteomics tool for the creation of relevant protein databases and automatized protein annotation. Biol. Direct, 14, 2019, 21, 10.1186/s13062-019-0253-x.
Whelan, K.F., Colleran, E., Taylor, D.E., Phage inhibition, colicin resistance, and tellurite resistance are encoded by a single cluster of genes on the IncHI2 plasmid R478. J. Bacteriol. 177 (1995), 5016–5027, 10.1128/jb.177.17.5016-5027.1995.
Whittenbury, R., Dow, C.S., Morphogenesis and differentiation in Rhodomicrobium vannielii and other budding and prosthecate bacteria. Bacteriol. Rev. 41 (1977), 754–808.
Wright, G.E., Madigan, M.T., Photocatabolism of aromatic compounds by the phototrophic purple bacterium Rhodomicrobium vannielii. Appl. Environ. Microbiol 57 (1991), 2069–2073.
Yoon J.H., Park Y.H., 2006, Chapter 1.1.29. The genus Nocardioides. Prokaryotes 3:1099–1113. DOI: 10.1007/0–387-30743–5_44.
Zhang, J., Kobert, K., Flouri, T., Stamatakis, A., PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30:5 (2014), 614–620.
Zhang, K., Wang, Y., Tang, Y., Dai, J., Zhang, L., An, H., et al. Niastella populi sp. nov., isolated from soil of Euphrates poplar (Populus euphratica) forest, and emended description of the genus Niastella. Int J. Syst. Evol. Microbiol 60 (2010), 542–545.