UCE phylogenomics, biogeography, and classification of long-horned bees (Hymenoptera: Apidae: Eucerini), with insights on using specimens with extremely degraded DNA
Freitas, Felipe V; Branstetter, Michael G; Franceschini-Santos, Vinícius Het al.
CURE; ddBD; MCMCtree; museomics; UCE curation; Ecology, Evolution, Behavior and Systematics; Animal Science and Zoology; Developmental Biology; Insect Science
Abstract :
[en] Long-horned bees (Apidae, Eucerini) are found in different biomes worldwide and include some important crop pollinators. In the Western Hemisphere, Eucerini received extensive taxonomic study during the twentieth century, resulting in several revisions of its genera. In contrast, progress on eucerine phylogenetic research and the genus-level classification has been slow, primarily due to the relatively homogeneous external morphology within the tribe and the rarity of many of its species in collections. Here, we present a comprehensive phylogenetic study of Eucerini based on ultraconserved elements, including 153 species from nearly all genera and subgenera and from all biogeographic regions where they occur. Many of these specimens are from museums and were collected as far back as 1909. We discuss the challenges of working with specimens with highly degraded DNA, present insights into improving phylogenetic results for both species-tree and concatenation approaches, and present a new pipeline for UCE curation (Curation of UltraconseRved Elements - CURE). Our results show the existence of seven main lineages in Eucerini and most of the genera and subgenera to be reciprocally monophyletic. Using a comprehensive and up-to-date phylogenetic framework, we: (1) propose taxonomic changes, including a new subtribal classification and reorganized generic and subgeneric limits; (2) estimate divergence times; and (3) conduct a detailed exploration of historical biogeography of long-horned bees. We find that eucerine lineages expanded their range onto most continents only after their initial diversification in southern South America during the Eocene.
Disciplines :
Entomology & pest control
Author, co-author :
Freitas, Felipe V ; Laboratório de Biologia Comparada e Abelhas (LBCA), Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, Ribeirão Preto, Brazil ; U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Pollinating Insects Research Unit, Utah State University, Logan, United States ; Departamento de Ciências Biológicas, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP), Brazil ; Department of Entomology, Washington State University, Pullman, United States
Branstetter, Michael G ; U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Pollinating Insects Research Unit, Utah State University, Logan, United States
Franceschini-Santos, Vinícius H ; Laboratório de Biologia Comparada e Abelhas (LBCA), Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, Ribeirão Preto, Brazil ; Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
Dorchin, Achik ; Université de Mons - UMONS > Faculté des Sciences > Service de Zoologie ; Department of Biology - Invertebrates, Royal Museum for Central Africa, Tervuren, Belgium
Wright, Karen W; Plant Protection Division, Washington State Department of Agriculture, Yakima, United States ; Sevilleta Long-Term Ecological Research, University of New Mexico, Albuquerque, United States
López-Uribe, Margarita M ; Department of Entomology, The Pennsylvania State University, University Park, United States
Griswold, Terry; U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Pollinating Insects Research Unit, Utah State University, Logan, United States
Silveira, Fernando A; Laboratório de Sistemática de Insetos, Departamento de Zoologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
Almeida, Eduardo A. B ; Laboratório de Biologia Comparada e Abelhas (LBCA), Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, Ribeirão Preto, Brazil
Language :
English
Title :
UCE phylogenomics, biogeography, and classification of long-horned bees (Hymenoptera: Apidae: Eucerini), with insights on using specimens with extremely degraded DNA
This article is dedicated to Professor Fernando A. Silveira, mentor of the junior and senior authors. Fernando had an active role in the development of this research, especially in the proposal of a revised subtribal classification of Eucerini, but sadly passed away months before the submission of the manuscript. We are grateful to Antonio J. C. Aguiar (Universidade de Brasília, Brazil), Christophe Praz (Université de Neuchâtel, Switzerland), Jerome G. Rozen Jr. (American Museum of Natural History, USA), Carlos Roberto F. Brandão (Museu de Zoologia da Universidade de São Paulo, Brazil), Laurence Packer (York University, Canada), Maximilian Schwarz (Ansfelden, Austria), and Seán G. Brady (US National Museum of Natural History—Smithsonian Institution, USA) for generously providing specimens or tissue samples, essential for our broad taxonomic sampling. We are thankful to Gabriel A.R. Melo for kindly discussing some key aspects of the taxonomy of Neotropical Eucerini, and to three anonymous reviewers and the associate editor of Insect Systematics and Diversity, Jessica Gillung, for their valuable suggestions that helped improve the manuscript. We are grateful to Adriana Tiba, Julio Pupin, Laurence Packer, Sergio Jansen-Gonzalez, Javier Gross, and Shan Gui for allowing the use of their beautiful photographs of eucerine bee. This study was supported by USDA-ARS, and NSF (Project No. 2080-21000-019-00-D, and grant DEB-2127744, respectively) to M.G.B.; by grants #2018/09666-5, #2019/09215-6, and #2021/02196-6, São Paulo Research Foundation (FAPESP) to E.A.B.A. and F.V.F.; by the Brazilian National Council for Scientific and Technological Development (CNPq grants #310111/2019-6 and #422019/2018-6) to E.A.B.A. and F.V.F.; and by Coordenacão de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)—Brazil (Finance Code 001). USDA is an equal opportunity provider and employer.
Dorchin A, López-Uribe MM, Praz CJ, Griswold T, Danforth BN. Phylogeny, new generic-level classification, and historical biogeography of the Eucera complex (Hymenoptera: Apidae). Mol Phylogenet Evol. 2018:119:81–92. https://doi.org/10.1016/j.ympev.2017.10.007
Adams RH, Castoe TA. Statistical binning leads to profound model violation due to gene tree error incurred by trying to avoid gene tree error. Mol Phylogenet Evol. 2019:134:164–171. https://doi.org/10.1016/j.ympev.2019.02.012
Aguiar AJC, Melo GAR, Vasconcelos TNC, Gonçalves RB, Giugliano L, Martins AC. Biogeography and early diversification of Tapinotaspidini oil-bees support presence of Palaeocene savannas in South America. Mol Phylogenet Evol. 2020:143:106692. https://doi.org/10.1016/j.ympev.2019.10669
Almeida EAB, Packer L, Melo GAR, Danforth BN, Cardinal SC, Quinteiro FB, Pie MR. The diversification of neopasiphaeine bees during the Cenozoic (Hymenoptera: Colletidae). Zool Scr. 2019:48:226–242.
Almeida EAB, Pie MR, Brady SG, Danforth BN. Biogeography and diversification of colletid bees (Hymenoptera: Colletidae): emerging patterns from the southern end of the world. J Biogeogr. 2012:39:526–544.
Ascher JS, Pickering J. Discover Life bee species guide and world checklist (Hymenoptera: Apoidea: Anthophila); 2021.
Ashmead WH. Classification of the bees or the superfamily Apoidea. Trans Am Entomol Soc. 1899:26:49–100.
Azevedo JAR, Collevatti RG, Jaramillo CA, Strömberg CAE, Guedes TB, Matos-Maraví P, Bacon CD, Carillo JD, Faurby S, Antonelli A. On the young savannas in the land of ancient forests. In: Rull V, Carnaval AC, editors. Neotropical diversification: patterns and processes. Cham: Springer International Publishing; 2020. p. 271–298.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012:19:455–477.
Blaimer BB, Brady SG, Schultz TR, Lloyd MW, Fisher BL, Ward PS. Phylogenomic methods outperform traditional multi-locus approaches in resolving deep evolutionary history: a case study of formicine ants. BMC Evol Biol. 2015:15(1):1–14.
Blaimer BB, Lloyd MW, Guillory WX, Brady SG. Sequence capture and phylogenetic utility of genomic ultraconserved elements obtained from pinned insect specimens. PLoS One. 2016:11(8):e0161531. https://doi.org/10.1371/journal.pone.0161531
Blaimer BB, Mawdsley JR, Brady SG. Multiple origins of sexual dichromatism and aposematism within large carpenter bees. Evolution. 2018:72:1874–1889.
Blaimer BB, Santos BF, Cruaud A, Gates MW, Kula RR, Mikó I, Rasplus J-Y, Smith DR, Talamas EJ, Brady SG, et al. Key innovations and the diversification of Hymenoptera. Nat Commun. 2023:14(1):1212. https://doi.org/10.1038/s41467-023-36868-4
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014:30:2114–2120.
Borowiec ML. AMAS: a fast tool for alignment manipulation and computing of summary statistics. PeerJ. 2016:2016:e1660.
Borowiec ML. Spruceup: fast and flexible identification, visualization, and removal of outliers from large multiple sequence alignments. J Open Source Softw. 2019:4:1635.
Borowiec ML, Lee EK, Chiu JC, et al. Extracting phylogenetic signal and accounting for bias in whole-genome data sets supports the Ctenophora as sister to remaining Metazoa. BMC Genomics. 2015:16:987. https://doi.org/10.1186/s12864-015-2146-4
Boschman LM. Andean mountain building since the late Cretaceous: a paleoelevation reconstruction. Earth-Sci Rev. 2021:220:103640. https://doi.org/10.1016/j.earscirev.2021.103640
Bossert S, Murray EA, Almeida EAB, Brady SG, Blaimer BB, Danforth BN. Combining transcriptomes and ultraconserved elements to illuminate the phylogeny of Apidae. Mol Phylogenet Evol. 2019:130:121–131. https://doi.org/10.1016/j.ympev.2018.10.012
Bossert S, Wood TJ, Patiny S, Michez D, Almeida EAB, Minckley RL, Packer L, Neff JL, Copeland RS, Straka J, et al. Phylogeny, biogeography and diversification of the mining bee family Andrenidae. Syst Entomol. 2021:47:283–302.
Bossert S, Wood TJ, Patiny S, Michez D, Almeida EAB, Minckley RL, Packer L, Neff JL, Copeland RS, Straka J, Pauly A, Griswold T, Brady SG, Danforth BN, Murray EA. Phylogeny, biogeography and diversification of the mining bee family Andrenidae. Syst. Entomol. 2021:47:283–302.
Branstetter MG, Danforth BN, Pitts JP, Faircloth BC, Ward PS, Buffington ML, Gates MW, Kula RR, Brady SG. Phylogenomic insights into the evolution of stinging wasps and the origins of ants and bees. Curr Biol. 2017:27(7):1019–1025. https://doi.org/10.1016/j.cub.2017.03.027
Branstetter MG, Longino JT. Ultra-conserved element phylogenomics of new world Ponera (Hymenoptera: Formicidae) illuminates the origin and phylogeographic history of the endemic exotic ant Ponera exotica. Insect Syst Diversity. 2019:3(2):1–13.
Branstetter MG, Longino JT, Ward PS, Faircloth BC. Enriching the ant tree of life: enhanced UCE bait set for genome-scale phylogenetics of ants and other Hymenoptera. Methods Ecol Evol. 2017:8(6):768–776. https://doi.org/10.1111/2041-210x.12742
Branstetter MG, Müller A, Griswold TL, Orr MC, Zhu C. Ultraconserved element phylogenomics and biogeography of the agriculturally important mason bee subgenus Osmia (Osmia). Syst Entomol. 2021:46(2):453–472. https://doi.org/10.1111/syen.12470
Brown RP, Yang Z. Rate variation and estimation of divergence times using strict and relaxed clocks. BMC Evol Biol. 2011:11(1):2711–2712. https://doi.org/10.1186/1471-2148-11-271
Cameron SA. A new tribal phylogeny of the Apidae inferred from mitochondrial DNA sequences. Diversity in the Genus Apis. Boulder, CO: Westview Press; 1992. p. 71–87.
Cameron SA. Multiple origins of advanced eusociality in bees inferred from mitochondrial DNA sequences. Proc Natl Acad Sci U S A. 1993:90(18):8687–8691. https://doi.org/10.1073/pnas.90.18.8687
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000:17:540–552.
Cockerell TDA. New genera of bees. Entomol News. 1904:15:292.
Cockerell TDA. New name for a genus of bees. Entomologist. 1929:62:19.
Cresson ET. Descriptions of new species of North American bees. Proc Acad Nat Sci Phil. 1878:30:181–221.
Cure JR, Thiengo M, Silveira FA, Rocha LB. Levantamento da fauna de abelhas silvestres na ‘zona da mata’ de Minas Gerais: III. Mata secundária na região de Viçosa (Hymenoptera, Apoidea). Rev Bras Zool. 1992:9(3–4):223–239. https://doi.org/10.1590/s0101-81751992000200008
Dafni A, O’Toole C. Pollination syndromes in the Mediterranean: generalizations and peculiarities. In: Arianoutsou M, Groves RH, editors. Plant-animal interactions in mediterranean-type ecosystems. Dordrecht: Springer; 1994. p. 125–135.
van Dam MH, Henderson JB, Esposito L, Trautwein M. Genomic characterization and curation of UCEs improves species tree reconstruction. Syst Biol. 2021:70(2):307–321. https://doi.org/10.1093/sysbio/syaa063
Danforth BN, Cardinal S, Praz C, Almeida EAB, Michez D. The impact of molecular data on our understanding of bee phylogeny and evolution. Annu Rev Entomol. 2013:58:57–78.
Danforth BN, Minckley RL, Neff JL. The solitary bees: biology, evolution, conservation. Princeton: Princeton University Press; 2019.
Derkarabetian S, Benavides LR, Giribet G. Sequence capture phylogenomics of historical ethanol-preserved museum specimens: unlocking the rest of the vault. Mol Ecol Resour. 2019:19(6):1531–1544. https://doi.org/10.1111/1755-0998.13072
Dorchin A, Danforth BN, Griswold T. A new genus of eucerine bees endemic to southwestern North America revealed in phylogenetic analyses of the Eucera complex (Hymenoptera: Apidae: Eucerini). Arthropod Syst Phylo. 2018:76:215–234.
Driskell AC, Ané C, Burleig JG, McMahon MM, O’Meara BC, Sanderson MJ. Prospects for building the tree of life from large sequence databases. Science. 2004:306:1172–1174.
Dunn RE, Strömberg CAE, Madden RH, Kohn MJ, Carlini AA. Linked canopy, climate, and faunal change in the Cenozoic of Patagonia. Science. 2015:347:258–261.
Engel MS, Michener CD. Geological history of the stingless bees (Apidae: Meliponini). In: Vit P, Roubik DW, editors. Stingless bees process honey and pollen in cerumen pots. Mérida: Facultad de Farmacia y Bioanálisis, Universidad de Los Andes; 2013.
Faircloth BC. PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics. 2016:32:786–788.
Faircloth BC. illumiprocessor: a trimmomatic wrapper for parallel adapter and quality trimming. Github; 2013.
Faircloth BC, Branstetter MG, White ND, Brady SG. Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among Hymenoptera. Mol Ecol Resour. 2015:15(3):489–501. https://doi.org/10.1111/1755-0998.12328
Faircloth BC, McCormack JE, Crawford NG, Harvey MG, Brumfield RT, Glenn TC. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst Biol. 2012:61(5):717–726. https://doi.org/10.1093/sysbio/sys004
Freitas FV. New genus and subgenus of South American long-horned bees (Apidae, Eucerini). Zootaxa. 2022:5196(4):595–600. https://doi.org/10.11646/zootaxa.5196.4.8
Freitas FV, Branstetter MG, Casali DM, Aguiar AJC, Griswold T, Almeida EAB. Phylogenomic dating and Bayesian biogeography illuminate an antitropical pattern for eucerine bees. J Biogeogr. 2022:49(6):1034–1047. https://doi.org/10.1111/jbi.14359
Freitas FV, Branstetter MG, Griswold T, Almeida EAB. Partitioned gene-tree analyses and gene-based topology testing help resolve incongruence in a Phylogenomic study of host-specialist bees (Apidae: Eucerinae). Mol Biol Evol. 2021:38(3):1090–1100. https://doi.org/10.1093/molbev/ msaa277
Freitas FV, Santos Júnior JE, Santos FR, Silveira FA. Species delimitation and sex associations in the bee genus Thygater, with the aid of molecular data, and the description of a new species. Apidologie. 2018:49(4):4841–4496. https://doi.org/10.1007/s13592-018-0576-0
Freitas FV, Santos Júnior JE, Santos FR, Silveira FA. A phylogenetic study of the Thygater-Trichocerapis group and new scopes for the subgenera of Thygater Holmberg (Hymenoptera, Apidae). Syst Entomol. 2019:44:728–744.
Freitas FV, Silveira FA. Synopsis of the bee genus Thygater Holmberg 1884 (Hymenoptera, Apidae) in the Brazilian state of Minas Gerais, with the description of a new species and a key to all Brazilian species. Zootaxa. 2017:4238(1):1–29. https://doi.org/10.11646/zootaxa.4238.1.1
Friese H. Die Apidae (Blumenwespen) von Argentina nach den Reisenergebnissen der Herren A. C. Jensen-Haarup und P. Jörgensen in den Jahren 1904-1907. Flora Fauna. 1908:10:1–94
Friese H. Neue Bienen-Arten der palaearktischen Region (Hym.). Archiv für Naturgeschichte. 1911:77:135–143.
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010:59(3):307–321. https://doi.org/10.1093/sysbio/syq010
Hines HM. Historical biogeography, divergence times, and diversification patterns of bumble bees (Hymenoptera: Apidae: Bombus). Syst Biol. 2008:57(1):58–75. https://doi.org/10.1080/10635150801898912
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018:35(2):518–522. https://doi.org/10.1093/molbev/msx281
Höhna S, Landis MJ, Heath TA, Boussau B, Lartillot N, Moore BR, Huelsenbeck JP, Ronquist F. RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language. Syst Biol. 2016:65(4):726–736. https://doi.org/10.1093/sysbio/syw021
Holmberg EL. Viajes al Tandil y a la Tinta, 2nd Parte, Zoologia, Insectos. I. Himenópteros-Hymenoptera. Act Acad Nac Cienc Córdoba. 1884:5:117–136.
Holmberg EL. Delectus Hymenopterologicus Argentinus. Hymenopterorum Argentinorum et quorumdam exoticorum observationes synonimicas, addendas, novorumque generum specierumque descriptiones contines. Anales Mus Nac Hist Nat Buenos Aires. 1903:2:377–468.
Holmberg EL. Alloscirtetica, Holmbg., n. nom. Apuntes Hist Nat. 1909:1:77.
Holt BG, Lessard J-P, Borregaard MK, Fritz SA, Araújo MB, Dimitrov D, Fabre P-H, Graham CH, Graves GR, Jønsson KA, et al. An update of Wallace’s zoogeographic regions of the World. Science. 2013:339:74–78.
Hurd PD, Linsley EG, Whitaker TW. Squash and gourd bees (Peponapis, Xenoglossa) and the origin of the cultivated cucurbita. Evolution. 1971:25:218–234.
Jiang D, Klaus S, Zhang YP, Hillis DM, Li JT. Asymmetric biotic interchange across the Bering land bridge between Eurasia and North America. Natl Sci Rev. 2019:6(4):739–745. https://doi.org/10.1093/nsr/nwz035
Jiang X, Edwards SV, Liu L, Faircloth B. The multispecies coalescent model outperforms concatenation across diverse Phylogenomic data sets. Syst Biol. 2020:69:795–812.
Jörgensen P. Beobachtungen über Blumenbesuch, Biologie, Verbreitung usw. der Bienen von Mendoza. (Hym.). Dtsch Entomol Z. 1909:1909(2):21153–21227. https://doi.org/10.1002/mmnd.48019090206
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017:14(6):587–589. https://doi.org/10.1038/nmeth.4285
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013:30:772–780.
Kendall DG. On the generalized ‘birth-and-death’ process. Ann Math Stat. 1948:19(1):1–15. https://doi.org/10.1214/aoms/1177730285
Kubatko LS, Degnan JH. Inconsistency of phylogenetic estimates from concatenated data under coalescence. Syst Biol. 2007:56(1):17–24. https://doi.org/10.1080/10635150601146041
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018:35(6):1547–1549. https://doi.org/10.1093/molbev/msy096
Laberge WE. Notes on the genus Gaesischia Michener, LaBerge and Moure, with descriptions of a new species and subgenus from Mexico. Pan-Pacific Entomol. 1958:34:195–201.
LaBerge WE. A revision of the bees of the genus Melissodes in North and Central America. Part I. Univ Kansas Sci Bull. 1956a:38:911–1194.
LaBerge WE. A revision of the bees of the genus Melissodes in North and Central America. Part II. Univ Kansas Sci Bull. 38:533–578.1956.
LaBerge WE. The genera of bees of the tribe Eucerini in North and Central America (Hymenoptera, Apoidea). Am Mus Novit. 1957:1837:1–44.
LaBerge WE. A revision of the bees of the genus Melissodes in North and Central America. Part III. Univ Kansas Sci Bull. 1961:42:283–663.
LaBerge WE. Revision of the bees of the genus Tetraloniella in the New World (Hymenoptera: Apidae). Ill Nat Hist Surv Bull. 2001:36(1–3):67–162. https://doi.org/10.21900/j.inhs.v36.125
Landis MJ, Freyman WA, Baldwin BG. Retracing the Hawaiian silversword radiation despite phylogenetic, biogeographic, and paleogeographic uncertainty. Evolution. 2018:72(11):2343–2359. https://doi.org/10.1111/evo.13594
Latreille PA. Les insectes. In: Cuvier GCLD, editor. Règne animal. Paris: J.-B. Baillière; 1829. p. 556.
Lepeletier ALM. Histoire naturelle des insectes. In: Hyménoptères. 2nd ed. Paris: Librairie Encyclopédique de Roret; 1841.
López-Uribe MM, Cane JH, Minckley RL, Danforth BN. Crop domestication facilitated rapid geographical expansion of a specialist pollinator, the squash bee Peponapis pruinosa. Proc Biol Sci. 2016:283(1833):20160443. https://doi.org/10.1098/rspb.2016.0443
Maddison WP, Maddison DR. Mesquite: a modular system for evolutionary analysis; 2019.
Martins AC, Melo GAR. The New World oil-collecting bees Centris and Epicharis (Hymenoptera, Apidae): molecular phylogeny and biogeographic history. Zool. Scr. 2016:45:22–33.
Martins AC, Melo GAR. The New World oil-collecting bees Centris and Epicharis (Hymenoptera, Apidae): molecular phylogeny and biogeographic history. Zool Scr. 2016:45(1):22–33.
Martins AC, Santos LM, Dalmolin A. Danuncia Urban: a life devoted to entomology. In: Aguiar AJC., Gonçalves RB, Ramos KS, editors. Ensaios Sobre as Abelhas Da Região Neotropical: Homenagem Aos 80 Anos de Danuncia Urban. Curitiba: Editora UFPR; 2015. p. 11–48.
Masa-Iranzo I, Sanmartín I, Caruzo MBR, Riina R. Skipping the dry diagonal: spatio-temporal evolution of Croton section Cleodora (Euphorbiaceae) in the Neotropics. Bot J Linn Soc. 2021:197:61–84.
McCormack JE, Tsai WLE, Faircloth BC. Sequence capture of ultraconserved elements from bird museum specimens. Mol Ecol Resour. 2016:16:1189–1203.
Melo GAR. Stingless bees (Meliponini). In: Starr C, editors. Encyclopedia of social insects. Cham: Springer; 2020. p. 1–18.
Michelette ERF, Camargo JMF. Bee-plant community in a xeric ecosystem in Argentina. Rev Bras Zool. 2000:17:651–665.
Michener CD. Taxonomic observations on bees with descriptions of new genera and species (Hymenoptera; Apoidea). J N Y Entomol Soc. 1942:50:273–282.
Michener CD. Biogeography of the bees. Ann Mo Bot Gard. 1979:66(3):277–347. https://doi.org/10.2307/2398833
Michener CD. The bees of the World. 2nd ed. Baltimore: The Johns Hopkins University Press; 2007.
Michener CD, LaBerge WE, Moure JS. Some American Eucerini bees. Dusenia. 1955:6:213–228.
Michener CD, Moure JS. Generic positions of some South American eucerine bees (Hymenoptera, Apoidea). Dusenia. 1956:7:277–290.
Michener CD, Moure JS. A study of the classification of the more primitive non-parasitic Anthophorine bees (Hymenoptera, Apoidea). Bull Am Mus Nat Hist. 1957:112:395–452.
Minckley RL, Radke WR. Extreme species density of bees (Apiformes, Hymenoptera) in the warm deserts of North America. J Hymenopt Res. 2021:82:317–345. https://doi.org/10.3897/jhr.82.60895
Minh BQ, Nguyen MAT, Von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 2013:30(5):1188–1195. https://doi.org/10.1093/molbev/mst024
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, Lanfear R, Teeling E. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020:37:1530–1534.
Moure JS. A new genus and two new species of eucerine bees from South America (Hymenoptera, Apoidea). Dusenia. 1967:8:147–152.
Moure JS, Michener CD. A contribution toward the classification of neotropical Eucerini (Hymenoptera, Apoidea). Dusenia. 1955:6:239–331.
Moure JS, Urban D, Melo GAR. Catalogue of Bees (Hymenoptera, Apoidea) in the Neotropical Region—online version; 2012. http://www.moure.cria.org.br/catalogue.
Moyle RG, Oliveros CH, Andersen MJ, Hosner PA, Benz BW, Manthey JD, Travers SL, Brown RM, Faircloth BC. Tectonic collision and uplift of Wallacea triggered the global songbird radiation. Nat Commun. 2016:7(1):1–7.
Nee S, May RM, Harvey PH. The reconstructed evolutionary process. Philos Trans R Soc Lond B Biol Sci. 1994:344(1309):305–311. https://doi.org/10.1098/rstb.1994.0068
Orr MC, Branstetter MG, Straka J, Yuan F, Leijs R, Zhang D, Zhou Q, Zhu C-D. Phylogenomic interrogation revives an overlooked hypothesis for the early evolution of the bee family Apidae (Hymenoptera: Apoidea), with a focus on the subfamily Anthophorinae. Insect Syst Divers. 2022:27:1019–1025.
Orr MC, Hughes AC, Chesters D, Pickering J, Zhu C-D, Ascher JS. Global patterns and drivers of bee distribution. Curr Biol. 2021:31:1–8.
Parker FD. How efficient are bees in pollinating sunflowers? J Kans Entomol Soc. 1981b:54:61–67.
Parker FD. Notes on the biology of a common sunflower bee, Melissodes (Eumelissodes) agilis Cresson. J N Y Entomol Soc. 1981a:89:43–52.
Patton WH. Generic arrangement of the bees allied to Melissodes and Anthophora, Vol. 5. Washington, D.C.: U S Geol Geogr Surv Territories; 1879. p. 471–479.
Pérez-Escobar OA, Zizka A, Bermúdez MA, Meseguer AS, Condamine FL, Hoorn C, Hooghiemstra H, Pu Y, Bogarín D, Boschman LM, et al. The Andes through time: evolution and distribution of Andean floras. Trends Plant Sci. 27–2022:27:364–378.
Philippe H, Snell EA, Bapteste E, Lopez P, Holland PWH, Casane D. Phylogenomics of eukaryotes: impact of missing data on large alignments. Mol Biol Evol. 2004:21(9):1740–1752. https://doi.org/10.1093/molbev/ msh182
Plummer M, Best N, Cowles K, Vines K. CODA: convergence diagnosis and output analysis for MCMC. R News. 2006:6:7–11.
Pound MJ, Haywood AM, Salzmann U, Riding JB, Lunt DJ, Hunter SJ. A Tortonian (late Miocene, 11.61–7.25 Ma) global vegetation reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol. 2011:300(1-4):29–45. https://doi.org/10.1016/j.palaeo.2010.11.029
Praz CJ, Packer L. Phylogenetic position of the bee genera Ancyla and Tarsalia (Hymenoptera: Apidae): a remarkable base compositional bias and an early Paleogene geodispersal from North America to the Old World. Mol Phylogenet Evol. 2014:81:258–270. https://doi.org/10.1016/j.ympev.2014.09.003
Puttick MN, Schwartz R. MCMCtreeR: functions to prepare MCMCtree analyses and visualize posterior ages on trees. Bioinformatics. 2019:35:5321–5322.
R Core Team. R: a language and environment for statistical computing; 2020.
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol. 2018:67(5):901–904. https://doi.org/10.1093/sysbio/syy032
Ramos KS, Martins AC, Melo GAR. Evolution of andrenine bees reveals a long and complex history of faunal interchanges through the Americas during the Mesozoic and Cenozoic. Mol Phylogenet Evol. 2022:172:107484. https://doi.org/10.1016/j.ympev.2022.107484
Rasmussen C, Gonzalez V, Engel MS, Michener CD. In memoriam: Wallace Edmund LaBerge (1927-2013). J Melittol. 2013:17:1–22.
Ravelo AC, Andreasen DH, Lyle M, Lyle AO, Wara MW. Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature. 2004:429:263–267.
Raymo ME, Grant B, Horowitz M, Rau GH. Mid-Pliocene warmth: stronger greenhouse and stronger conveyor. Mar Micropaleontol. 1996:27:313–326.
Ree RH. Detecting the historical signature of key innovations using stochastic models of character evolution and cladogenesis. Evolution. 2005:59(2):257–265.
Ree RH, Smith SA. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and Cladogenesis. Syst Biol. 2008:57(1):4–14. https://doi.org/10.1080/10635150701883881
dos Reis M, Yang Z. Approximate likelihood calculation on a phylogeny for Bayesian Estimation of Divergence Times. Mol Biol Evol. 2011:28(7):2161–2172. https://doi.org/10.1093/molbev/msr045
dos Reis M, Yang Z. Bayesian molecular clock dating using genome-scale datasets. In: Anisimova M, editor. Evolutionary genomics: statistical and computational methods. New York: Springer; 2019. p. 309–330.
Ribeiro PG, Torres Jiménez MF, Andermann T, Antonelli A, Bacon CD, Matos-Maraví P. A bioinformatic platform to integrate target capture and whole genome sequences of various read depths for phylogenomics. Mol Ecol. 2021:30:6021–6035.
Robertson C. Descriptions of new species of North American bees. Trans Am Entomol Soc. 1891:18:49–66.
Robertson C. Some new or little-known bees—II. Can Entomol. 1902:34(2):48–49. https://doi.org/10.4039/ent3448-2
Robertson C. Synopsis of Anthophila. Can Entomol. 1904:36(2):37–43. https://doi.org/10.4039/ent3637-2
Roig-Alsina AH, Michener CD. Studies of the phylogeny and classification of long-tonged bees. Univ Kansas Sci Bull. 1993:55:123–173.
Rueda M, Rodríguez M, Hawkins BA. Identifying global zoogeographical regions: lessons from Wallace. J Biogeogr. 2013:40(12):2215–2225. https://doi.org/10.1111/jbi.12214
Salter JF, Hosner PA, Tsai WLE, McCormack JE, Braun EL, Kimball RT, Brumfield RT, Faircloth BC. Historical specimens and the limits of subspecies phylogenomics in the New World quails (Odontophoridae). Mol Phylogenet Evol. 2022:175:107559. https://doi.org/10.1016/j.ympev.2022.107559
Sanmartín I, Enghoff H, Ronquist F. Patterns of animal dispersal, vicariance and diversification in the Holarctic. Biol J Linn Soc. 2001:73:345–390.
Santos Júnior JE, Williams PH, Dias CAR, Silveira FA, Faux P, Coimbra RTF, Campos DP, Santos FR. Biogeography and Diversification of Bumblebees (Hymenoptera: Apidae), with Emphasis on Neotropical Species. Diversity (Basel). 2022:14:238.
dos Santos FM, de Carvalho CAL, Silva RF. Diversidade de abelhas (Hymenoptera: Apoidea) em uma área de transição Cerrado-Amazônia. Acta Amazonica. 2004:34:319–328.
Scopoli GA. Annus historico-naturalis, Vol. 4. Lipsiae: C. G. Hilscher; 1770. p. 1–152.
Sheppard WS, McPheron BA. Ribosomal DNA diversity in Apidae. Diversity in the Genus Apis. Boulder: Westview Press; 1991. p. 89–102.
Silveira FA, Rocha LB, Cure JR, Oliveira MJDO. Abelhas silvestres da zona da mata de Minas Gerais. II. Diversidade, abundância e fontes de alimento em uma pastagem abandonada de ponte nova. Rev Bras Entomol. 1993:37:595–610.
Silveira FA, Campos MJO. A melissofauna de Corumbataí e Paraopeba e uma análise da biogeografia das abelhas do cerrado brasileiro. Revta bras. ent. 1995:39:371–401.
Sless TJL, Branstetter MG, Gillung JP, Krichilsky EA, Tobin KB, Straka J, Rozen JG, Freitas FV, Martins AC, Bossert S, et al. Phylogenetic relationships and the evolution of host preferences in the largest clade of brood parasitic bees (Apidae: Nomadinae). Mol Phylogenet Evol. 2022:166:107326. https://doi.org/10.1016/j.ympev.2021.107326
Smith F. Catalogue of hymenopterous insects in the collection of the British museum. Part II Apidae. London: Printed by order of the Trustees; 1854.
Smith BT, Mauck WM, Benz BW, Andersen MJ. Uneven Missing Data Skew Phylogenomic Relationships within the Lories and Lorikeets. Genome Biol. Evol. 2020:12:1131–1147.
Spinola M. Compte rendu des Hymenopteres recueillis par M. Fischer pendant son voyage en Egypte. Ann Soc Entomol Fr. 1838:7:437–546.
Spinola M. Himenopteros. In: Gay C, editors. Historia Fisica y Politica de Chile. Zoologia, Vol. 6. Paris: Maulde & Renon; 1851. p. 153–569.
Springer MS, Gatesy J. The gene tree delusion. Mol Phylogenet Evol. 2016:94(Pt A):1–33. https://doi.org/10.1016/j.ympev.2015.07.018
Strömberg CAE. Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of North America. Proc Natl Acad Sci U S A. 2005:102:11980–11984.
Stroynowski Z, Ravelo AC, Andreasen D. A Pliocene to recent history of the Bering Sea at Site U1340A, IODP Expedition 323. Paleoceanography. 2015:30(12):1641–1656. https://doi.org/10.1002/2015pa002866
Swezey CS. Cenozoic stratigraphy of the Sahara, Northern Africa. J Afr Earth Sci. 2009:53(3):89–121. https://doi.org/10.1016/j.jafrearsci.2008.08.001
Tagliacollo VA, Lanfear R. Estimating improved partitioning schemes for ultraconserved elements. Mol Biol Evol. 2018:35(7):1798–1811. https://doi.org/10.1093/molbev/msy069
Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 2007:56:564–577.
Tamura K, Battistuzzi FU, Billing-Ross P, Murillo O, Filipski A, Kumar S. Estimating divergence times in large molecular phylogenies. Proc Natl Acad Sci U S A. 2012:109(47):19333–19338. https://doi.org/10.1073/pnas.1213199109
Tange O. GNU Parallel 2018; 2018.
Tao Q, Barba-Montoya J, Kumar S. Data-driven speciation tree prior for better species divergence times in calibration-poor molecular phylogenies. Bioinformatics. 2021:37(Suppl_1):i102–i110. https://doi.org/10.1093/bioinformatics/btab307
Trunz V, Packer L, Vieu J, Arrigo N, Praz CJ. Comprehensive phylogeny, biogeography and new classification of the diverse bee tribe Megachilini: can we use DNA barcodes in phylogenies of large genera? Mol Phylogenet Evol. 2016:103:245–259. https://doi.org/10.1016/j.ympev.2016.07.004
Urban D. As espécies do gênero Dasyhalonia Michener LaBerge & Moure, 1955 (Hymenoptera—Apoidea). Rev Bras Biol. 1967b:27:247–266.
Urban D. As espécies do gênero Thygater Holmberg, 1984 (Hymenoptera, Apidae). Bol Univ Fed Paraná. 1967c:12:177–309.
Urban D. O gênero Lophothygater Moure & Michener, 1955 (Hymenoptera, Apoidea). Dusenia. 1967a:8:135–145.
Urban D. As espécies de Gaesischia Michener, LaBerge e Moure, 1955. Bol Univ Fed Paraná. 1968a:3:79–129.
Urban D. As espécies do gênero Melissoptila Holmberg, 1884 (Hymenoptera-Apoidea). Rev Bras Entomol. 1968b:13:1–94.
Urban D. As espécies de Alloscirtetica Holmberg, 1909. Bol Univ Paraná. 1971:16:307–369.
Urban D. As espécies de Svastrides Michener, LaBerge e Moure, 1955. Rev Bras Biol. 1972:32:485–498.
Urban D. As espécies sulamericanas do gênero Melissodes (Latreille, 1829) (Hymenoptera, Apoidea). Rev Bras Biol. 1973:33:201–220.
Urban D. Sobre o gênero Alloscirtetica Holmberg, 1909 (Hymenoptera, Apoidea). Dusenia. 1982:13:65–80.
Urban D. Dois gêneros novos de Eucerinae neotropicais (Hymenoptera, Apoidea). Rev Bras Zool. 1989b:6(1):117–124. https://doi.org/10.1590/ s0101-81751989000100013
Urban D. Espécies novas e notas sobre o gênero Gaesischia Michener, LaBerge, Moure, 1955 (Hymenoptera, Apoidea). Rev Bras Entomol. 1989a:33:75–102.
Urban D. Mirnapis inca, gênero e espécies novos de Eucerinae da América do sul (Hymenoptera, Apoidae, Anthophoridae). Rev Bras Zool. 1997:14(3):565–569. https://doi.org/10.1590/s0101-81751997000300006
Urban D. Espécies novas de Melissoptila Holmberg da América do Sul e notas taxonômicas (Hymenoptera, Anthophoridae). Rev Bras Zool. 1998:15(1):01–46. https://doi.org/10.1590/s0101-81751998000100001
Urban D, Moure JS, Melo GAR. Eucerini Latreille, 1802. In: Urban D, Moure JS, Melo GAR, editors. Catalogue of bees (Hymenoptera, Apoidea) in the Neotropical region—Online version. Curitiba; 2012.
Varela L, Tambusso PS, McDonald HG, Fariña RA. Phylogeny, Macroevolutionary trends and historical biogeography of sloths: insights from a Bayesian morphological clock analysis. Syst Biol. 2019:68(2):204–218. https://doi.org/10.1093/sysbio/syy058
Wilson JS, Carril OM, Sipes SD. Revisiting the Great American Biotic Interchange through analyses of amphitropical bees. Ecography. 2014:37:791–796.
Wolfe JA. An analysis of Neogene climates in Beringia. Palaeogeogr Palaeoclimatol Palaeoecol. 1994:108(3-4):207–216. https://doi.org/10.1016/0031-0182(94)90234-8
Wright KW, Miller KB, Song H. A molecular phylogeny of the long-horned bees in the genus Melissodes Latreille (Hymenoptera: Apidae: Eucerinae). Insect Syst Evol.: 2020:52(4)428–443.
Yang Z. Paml: a program package for phylogenetic analysis by maximum likelihood. Bioinformatics. 1997:13(5):555–556. https://doi.org/10.1093/bioinformatics/13.5.555
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007:24(8):1586–1591. https://doi.org/10.1093/molbev/msm088
Yang Z, Rannala B. Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol Biol Evol. 2006:23(1):212–226. https://doi.org/10.1093/molbev/msj024
Yin J, Zhang C, Mirarab S, Schwartz R. ASTRAL-MP: scaling ASTRAL to very large datasets using randomization and parallelization. Bioinformatics. 2019:35:3961–3969.
Zachos J, Dickens G, Zeebe R. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature. 2008:451:279–283.
Zanella FCV. Evolução da biota da diagonal de formações abertas secas da América do Sul. In: Carvalho CJB., Almeida EAB, editors. Biogeografia Da América Do Sul: Padrões e Processos. São Paulo: ROCA; 2011. p. 198–220.
Zavortink TJ. A new genus and species of Eucerine bee from North America (Hymenoptera: Anthophoridae). Proc Calif Acad Sci. 1975:40:231–242.
Zhang C, Rabiee M, Sayyari E, Mirarab S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinf. 2018:19 (S6):153.