Article (Scientific journals)
Data-driven Covariance Tuning of the Extended Kalman Filter for Visual-based Pose Estimation of the Stewart Platform
Salton, Aurélio T.; Araujo pimentel, Guilherme; Melo, José V. et al.
2023In Journal of Control, Automation and Electrical Systems, 34 (4), p. 720 - 730
Peer reviewed
 

Files


Full Text
09_SaltonPimentelMeloCastroBenfica2023.pdf
Author postprint (1.56 MB)
Download

All documents in ORBi UMONS are protected by a user license.

Send to



Details



Keywords :
Computer vision; Extended Kalman filter (EKF); Inertial measurement units (IMU); Quartenion; Sensor fusion; State estimation; Data driven; Extended kalman filter; Filter approach; Inertial measurement unit; Inertial measurements units; Pose-estimation; Quaternion representation; Stewart platforms; Control and Systems Engineering; Energy Engineering and Power Technology; Computer Science Applications; Electrical and Electronic Engineering
Abstract :
[en] This paper explores the quaternion representation in order to devise an extended Kalman filter approach for pose estimation: inertial measurements are fused with visual data so as to estimate the position and orientation of a six degrees-of-freedom rigid body. The filter equations are described along with a data-driven tuning method that selects the model covariance matrix based on experimental results. Finally, the proposed algorithm is applied to a six degrees-of-freedom Stewart platform, a representative system of a large class of industrial manipulators that could benefit from the proposed solution.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Salton, Aurélio T. ;  School of Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Araujo pimentel, Guilherme  ;  Université de Mons - UMONS > Faculté Polytechnique > Service Systèmes, Estimation, Commande et Optimisation
Melo, José V.;  Group of Automation and Control of Systems (GACS), School of Technology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
Castro, Rafael S.;  Group of Automation and Control of Systems (GACS), School of Technology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
Benfica, Juliano;  Group of Automation and Control of Systems (GACS), School of Technology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
Language :
English
Title :
Data-driven Covariance Tuning of the Extended Kalman Filter for Visual-based Pose Estimation of the Stewart Platform
Publication date :
August 2023
Journal title :
Journal of Control, Automation and Electrical Systems
ISSN :
2195-3880
eISSN :
2195-3899
Publisher :
Springer
Volume :
34
Issue :
4
Pages :
720 - 730
Peer reviewed :
Peer reviewed
Research unit :
F107 - Systèmes, Estimation, Commande et Optimisation
Research institute :
R200 - Institut de Recherche en Energie
Funders :
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Funding text :
A. T. Salton acknowledges the support from CNPq Brazil under Grant 306214/2018-0.
Available on ORBi UMONS :
since 23 October 2023

Statistics


Number of views
4 (1 by UMONS)
Number of downloads
24 (0 by UMONS)

Scopus citations®
 
2
Scopus citations®
without self-citations
2
OpenCitations
 
0
OpenAlex citations
 
2

Bibliography


Similar publications



Contact ORBi UMONS