Computer vision; Extended Kalman filter (EKF); Inertial measurement units (IMU); Quartenion; Sensor fusion; State estimation; Data driven; Extended kalman filter; Filter approach; Inertial measurement unit; Inertial measurements units; Pose-estimation; Quaternion representation; Stewart platforms; Control and Systems Engineering; Energy Engineering and Power Technology; Computer Science Applications; Electrical and Electronic Engineering
Abstract :
[en] This paper explores the quaternion representation in order to devise an extended Kalman filter approach for pose estimation: inertial measurements are fused with visual data so as to estimate the position and orientation of a six degrees-of-freedom rigid body. The filter equations are described along with a data-driven tuning method that selects the model covariance matrix based on experimental results. Finally, the proposed algorithm is applied to a six degrees-of-freedom Stewart platform, a representative system of a large class of industrial manipulators that could benefit from the proposed solution.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Salton, Aurélio T. ; School of Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Araujo pimentel, Guilherme ; Université de Mons - UMONS > Faculté Polytechnique > Service Systèmes, Estimation, Commande et Optimisation
Melo, José V.; Group of Automation and Control of Systems (GACS), School of Technology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
Castro, Rafael S.; Group of Automation and Control of Systems (GACS), School of Technology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
Benfica, Juliano; Group of Automation and Control of Systems (GACS), School of Technology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
Language :
English
Title :
Data-driven Covariance Tuning of the Extended Kalman Filter for Visual-based Pose Estimation of the Stewart Platform
Publication date :
August 2023
Journal title :
Journal of Control, Automation and Electrical Systems
Araguás, G., Paz, C., Gaydou, D., & Paina, G. P. (2015). Quaternion-based orientation estimation fusing a camera and inertial sensors for a hovering UAV. Journal of Intelligent and Robotic Systems, 77, 37–53. DOI: 10.1007/s10846-014-0092-z
Cardona, M. (2015). A new approach for the forward kinematics of general Stewart–Gough platforms. In Proceedings of the 2015 IEEE thirty fifth central American and panama convention (CONCAPAN XXXv).
Colonnier, F., Vedova, L. D., & Orchard, G. (2021). ESPEE: Event-based sensor pose estimation using an extended Kalman filter. Sensors, 21(23), 7840. DOI: 10.3390/s21237840
He, Y., Sun, W., Huang, H., Liu, J., Fan, H., & Sun, J. (2020). PVN3D: A deep point-wise 3D keypoints voting network for 6DoF pose estimation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR).
Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Fluids Engineering, 82, 35–45.
Li, S., Li, D., Zhang, C., Wan, J., & Xie, M. (2020). RGB-D image processing algorithm for target recognition and pose estimation of visual servo system. Sensors, 20(2), 430. DOI: 10.3390/s20020430
Ma, Y., Soatto, S., Košecká, J., & Sastry, S. S. (2004). An invitation to 3-D vision: From imagem to geometric models. Springer.
Mariottini, G. L., & Prattichizzo, D. (2005). EGT for multiple view geometry and visual servoing: Robotics vision with pinhole and panoramic cameras. IEEE Robotics & Automation Magazine, 12(4), 26–39. DOI: 10.1109/MRA.2005.1577022
Markley, F. L. (2003). Attitude error representations for Kalman filtering. Journal of Guidance, Control, and Dynamics, 26(2), 311–317. DOI: 10.2514/2.5048
Markley, F. L., & Crassidis, J. L. (2014). Fundamentals of spacecraft attitude determination and control. Springer.
Nützi, G., Weiss, S., Scaramuzza, D., & Siegwart, R. (2011). Fusion of IMU and vision for absolute scale estimation in monocular SLAM. Journal of Intelligent & Robotic Systems, 61(1–4), 287–299. DOI: 10.1007/s10846-010-9490-z
Ratz, S., Dymczyk, M., Siegwart, R., & Dubé, R. (2020). Oneshot global localization: Instant lidar-visual pose estimation. In 2020 IEEE international conference on robotics and automation (ICRA) (pp. 5415–5421).
Schönberger, J. L., Pollefeys, M., Geiger, A., & Sattler, T. (2018). Semantic visual localization. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
Sciavicco, L., & Siciliano, B. (2012). Modelling and control of robot manipulators. Springer.
Silva, J. G., Filho, J. O. D. A. L., & Fortaleza, E. L. F. (2018). Adaptive extended Kalman filter using exponencial moving average. In Proceedings of the 9th IFAC symposium on robust control design (Vol. 51, pp. 208–211).
Sveier, A., & Egeland, O. (2021). Dual quaternion particle filtering for pose estimation. IEEE Transactions on Control Systems Technology, 29(5), 2012–2025. DOI: 10.1109/TCST.2020.3026926
Tayebi, A., & McGilvray, S. (2006). Attitude stabilization of a VTOL quadrotor aircraft. IEEE Transactions on Control Systems Technology, 14(3), 562–571. DOI: 10.1109/TCST.2006.872519
Tong, X., Li, Z., Han, G., Liu, N., Su, Y., Ning, J., & Yang, F. (2018). Adaptive EKF based on HMM recognizer for attitude estimation using MEMS MARG sensors. IEEE Sensors Journal, 18(8), 3299–3310. DOI: 10.1109/JSEN.2017.2787578
Yang, C., Liu, Y., & Zell, A. (2020). RCPNet: Deep-learning based relative camera pose estimation for UAVs. In 2020 International conference on unmanned aircraft systems (ICUAS) (pp. 1085–1092).
Yuen, K. V., Liang, P. F., & Kuok, S. C. (2013). Online estimation of noise parameters for Kalman filter. Structural Engineering and Mechanics, 47(3), 361–381. DOI: 10.12989/sem.2013.47.3.361
Zhang, H., & Ye, C. (2020). A visual positioning system for indoor blind navigation. In 2020 IEEE international conference on robotics and automation (ICRA) (pp. 9079–9085).
Zhang, Y., Bian, C., & Gao, J. (2020). An unscented Kalman filter-based visual pose estimation method for underwater vehicles. In 2020 3rd international conference on unmanned systems (ICUS) (pp. 663–667).