Multigenerational exposure of microplastics on the microbiota of E. affinis (copepod): a comparative study between biodegradable and nonbiodegradable microplastics
[en] The accumulation of plastic debris around the world, especially in marine environments, has been well documented during the past decades. Recent studies have found that inorganic surfaces of microplastics (MPs) can be used by microorganisms as living substrates and form an ecosystem named “plastisphere.” Some microorganisms present in MPs are capable of producing polymer-degrading enzymes. In addition, MPs can also serve as vectors and carry microorganisms (including potential pathogens) into higher trophic levels through their ingestion by animals. In this study, impacts on copepod microbiota during chronic exposure to MPs were investigated by exposing copepods to a classic single-use polymer (low-density polyethylene (LDPE)) and a biodegradable polymer (polybutylene adipate terephthalate (PBAT)). Copepods were exposed to “virgin” and “weathered” MPs during four generations at an environmentally relevant concentration of 300 µg/L, followed by one “detoxification” generation without MP exposition. Impacts of MP exposure on copepod microbiota were investigated using 16S rRNA gene high-throughput sequencing. The result of nonmetric multidimensional scaling (NMDS) analysis showed that copepods (with or without MP exposure) carried distinguishable microbiota as compared with the microbiota of water and microalgae used for maintaining copepods. According to the results of permutational analysis of variance (PERMANOVA), the microbiota of MP-exposed (both PBAT and LDPE) copepods was significantly different from the microbiota of unexposed copepods during generations one to four. After “detoxification,” however, no significant difference in microbiota composition was observed among all generation five copepods. Altogether, impacts on copepod microbiota of MP exposure for multiple generations were observed, despite plastic origin (biodegradable or not) and aging conditions. Furthermore, copepod microbiota seemed to return to their original structure as soon as the MP exposure stopped.
Disciplines :
Materials science & engineering
Author, co-author :
Thery, Jérémy; Univ. Littoral Côte d’Opale, CNRS, Univ. Lille, IRD, UMR 8187, LOG, Laboratoire d’Océanologie et de Géosciences, Wimereux, France ; Centre d’Innovation et de Recherche des Matériaux et Polymères (CIRMAP), Service des Matériaux Polymères et Composites (SMPC), Université de Mons, Mons, Belgium
Li, Luen-Luen; Univ. Littoral Côte d’Opale, CNRS, Univ. Lille, IRD, UMR 8187, LOG, Laboratoire d’Océanologie et de Géosciences, Wimereux, France
Das, Shagnika; Univ. Littoral Côte d’Opale, CNRS, Univ. Lille, IRD, UMR 8187, LOG, Laboratoire d’Océanologie et de Géosciences, Wimereux, France ; Center for Marine Science and Technology, Amity Institute of Biotechnology, Amity University, Noida, India
Dufour, Dylan; Univ. Littoral Côte d’Opale, CNRS, Univ. Lille, IRD, UMR 8187, LOG, Laboratoire d’Océanologie et de Géosciences, Wimereux, France
Benali, Samira ; Université de Mons - UMONS > Faculté des Science > Service des Matériaux Polymères et Composites
Raquez, Jean-Marie ; Université de Mons - UMONS > Faculté des Science > Service des Matériaux Polymères et Composites
Souissi, Sami; Univ. Littoral Côte d’Opale, CNRS, Univ. Lille, IRD, UMR 8187, LOG, Laboratoire d’Océanologie et de Géosciences, Wimereux, France
Monchy, Sébastien; Univ. Littoral Côte d’Opale, CNRS, Univ. Lille, IRD, UMR 8187, LOG, Laboratoire d’Océanologie et de Géosciences, Wimereux, France
Language :
English
Title :
Multigenerational exposure of microplastics on the microbiota of E. affinis (copepod): a comparative study between biodegradable and nonbiodegradable microplastics
R400 - Institut de Recherche en Science et Ingénierie des Matériaux
Funding text :
This study is a part of the Ph.D. thesis of JT from the University of Mons and the University of Littoral Côte d’Opale, funded in equal parts by the two universities. This work has been financially supported by the French State and the French Region Hauts-de-France, in the framework of the project CPER IDEAL 2021-2029. Samira Benali acknowledge supports by the European Community (FEDER) for general support in the frame of LCFM-BIOMAT. Jean-Marie Raquez is a FRS-FNRS Research Associate. AcknowledgmentsThis study is a part of the Ph.D. thesis of JT from the University of Mons and the University of Littoral Côte d’Opale, funded in equal parts by the two universities. This work has been financially supported by the French State and the French Region Hauts-de-France, in the framework of the project CPER IDEAL 2021-2029. Samira Benali acknowledge supports by the European Community (FEDER) for general support in the frame of LCFM-BIOMAT. Jean-Marie Raquez is a FRS-FNRS Research Associate.
Ali W. Ali H. Gillani S. Zinck P. Souissi S. (2023). Polylactic acid synthesis, biodegradability, conversion to microplastics and toxicity: a review. Environ. Chem. Lett. 21, 1761–1786. doi: 10.1007/s10311-023-01564-8
Altschul S. F. Gish W. Miller W. Myers E. W. Lipman D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410. doi: 10.1016/S0022-2836(05)80360-2
Andrady A. L. (2011). Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605. doi: 10.1016/j.marpolbul.2011.05.030
Behnke A. Engel M. Christen R. Nebel M. Klein R. R. Stoeck T. (2011). Depicting more accurate pictures of protistan community complexity using pyrosequencing of hypervariable SSU rRNA gene regions: Protistan community complexity. Environ. Microbiol. 13, 340–349. doi: 10.1111/j.1462-2920.2010.02332.x
Brandt P. Gerdts G. Boersma M. Wiltshire K. H. Wichels A. (2010). Comparison of different DNA-extraction techniques to investigate the bacterial community of marine copepods. Helgol. Mar. Res. 64, 331–342. doi: 10.1007/s10152-010-0188-1
Choi J. S. Hong S. H. Park J.-W. (2020). Evaluation of microplastic toxicity in accordance with different sizes and exposure times in the marine copepod Tigriopus japonicus. Mar. Environ. Res. 153, 104838. doi: 10.1016/j.marenvres.2019.104838
Cole M. Lindeque P. K. Fileman E. Clark J. Lewis C. Halsband C. et al. (2016). Microplastics alter the properties and sinking rates of zooplankton faecal pellets. Environ. Sci. Technol. 50, 3239–3246. doi: 10.1021/acs.est.5b05905
Cole M. Lindeque P. Fileman E. Halsband C. Galloway T. S. (2015). The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod calanus helgolandicus. Environ. Sci. Technol. 49, 1130–1137. doi: 10.1021/es504525u
Coppock R. L. Galloway T. S. Cole M. Fileman E. S. Queirós A. M. Lindeque P. K. (2019). Microplastics alter feeding selectivity and faecal density in the copepod, Calanus helgolandicus. Sci. Total Environ. 687, 780–789. doi: 10.1016/j.scitotenv.2019.06.009
Couceiro J. F. Keller-Costa T. Marques M. Kyrpides N. C. Woyke T. Whitman W. B. et al. (2021). The Roseibium album (Labrenzia alba) Genome Possesses Multiple Symbiosis Factors Possibly Underpinning Host-Microbe Relationships in the Marine Benthos. Microbiol. Resour. Announc. 10, e00320–e00321. doi: 10.1128/MRA.00320-21
Cregeen S. J. J. (2016) Microbiota of dominant Atlantic copepods: Pleuromamma sp. as a host to a betaproteobacterial symbiont. Available at: https://eprints.soton.ac.uk/403351/.
Dang H. Li T. Chen M. Huang G. (2008). Cross-ocean distribution of rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Appl. Environ. Microbiol. 74, 52–60. doi: 10.1128/AEM.01400-07
Das S. Ouddane B. Hwang J.-S. Souissi S. (2020). Intergenerational effects of resuspended sediment and trace metal mixtures on life cycle traits of a pelagic copepod. Environ. pollut. 267, 115460. doi: 10.1016/j.envpol.2020.115460
Das S. Ouddane B. Souissi S. (2022). Responses of the copepod Eurytemora affinis to trace metal exposure: A candidate for sentinel to marine sediment resuspension effects. Mar. pollut. Bull. 181, 113854. doi: 10.1016/j.marpolbul.2022.113854
Dayras P. Bialais C. Sadovskaya I. Lee M.-C. Lee J.-S. Souissi S. (2021). Microalgal diet influences the nutritive quality and reproductive investment of the cyclopoid copepod Paracyclopina nana. Front. Mar. Sci. 8. doi: 10.3389/fmars.2021.697561
Delacuvellerie A. Benali S. Cyriaque V. Moins S. Raquez J.-M. Gobert S. et al. (2021). Microbial biofilm composition and polymer degradation of compostable and non-compostable plastics immersed in the marine environment. J. Hazard. Mater. 419, 126526. doi: 10.1016/j.jhazmat.2021.126526
de Steenhuijsen Piters W. A. A. Watson R. L. de Koff E. M. Hasrat R. Arp K. Chu M. L. J. N. et al. (2022). Early-life viral infections are associated with disadvantageous immune and microbiota profiles and recurrent respiratory infections. Nat. Microbiol. 7, 224–237. doi: 10.1038/s41564-021-01043-2
Dixon P. (2003). VEGAN, a package of R functions for community ecology. J. Vegetation Sci. 14, 927–930. doi: 10.1111/j.1654-1103.2003.tb02228.x
Fackelmann G. Sommer S. (2019). Microplastics and the gut microbiome: How chronically exposed species may suffer from gut dysbiosis. Mar. pollut. Bull. 143, 193–203. doi: 10.1016/j.marpolbul.2019.04.030
Geyer R. Jambeck J. R. Law K. L. (2017). Production, use, and fate of all plastics ever made. Sci. Adv. 3, 1700782. doi: 10.1126/sciadv.1700782
Gulla S. Sørum H. Vågnes Ø. Colquhoun D. J. (2015). Phylogenetic analysis and serotyping of Vibrio splendidus-related bacteria isolated from salmon farm cleaner fish. Dis. Aquat. Org, 117, 121–131. doi: 10.3354/dao02938
Hammer Ø. Harper D. A. Ryan P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electronica 4 (1), 9.
Han Y. Zhang X. Liu P. Xu S. Chen D. Liu J. N. et al. (2022). Microplastics exposure causes oxidative stress and microbiota dysbiosis in planarian Dugesia japonica. Environ. Sci. pollut. Res. 29, 28973–28983. doi: 10.1007/s11356-022-18547-x
Heidelberg J. F. Heidelberg K. B. Colwell R. R. (2002). Bacteria of the γ-subclass proteobacteria associated with zooplankton in Chesapeake bay. Appl. Environ. Microbiol. 68, 5498–5507. doi: 10.1128/AEM.68.11.5498-5507.2002
Heindler F. M. Alajmi F. Huerlimann R. Zeng C. Newman S. J. Vamvounis G. et al. (2017). Toxic effects of polyethylene terephthalate microparticles and Di(2-ethylhexyl)phthalate on the calanoid copepod, Parvocalanus crassirostris. Ecotoxicol. Environ. Saf. 141, 298–305. doi: 10.1016/j.ecoenv.2017.03.029
Huq A. Sack R. B. Nizam A. Longini I. M. Nair G. B. Ali A. et al. (2005). Critical factors influencing the occurrence of vibrio cholerae in the environment of Bangladesh. Appl. Environ. Microbiol. 71, 4645–4654. doi: 10.1128/AEM.71.8.4645-4654.2005
Iyare U. P. K. Ouki S. Bond T. (2020). Microplastics removal in wastewater treatment plants: a critical review. Environ. Sci.: Water Res. Technol. 6, 2664–2675. doi: 10.1039/D0EW00397B
Jacquin J. Cheng J. Odobel C. Pandin C. Conan P. Pujo-Pay M. et al. (2019). Microbial ecotoxicology of marine plastic debris: A review on colonization and biodegradation by the “Plastisphere”. Front. Microbiol. 10. doi: 10.3389/fmicb.2019.00865
Jeong C.-B. Kang H.-M. Lee M.-C. Kim D.-H. Han J. Hwang D.-S. et al. (2017). Adverse effects of microplastics and oxidative stress-induced MAPK/Nrf2 pathway-mediated defense mechanisms in the marine copepod Paracyclopina nana. Sci. Rep. 7, 41323. doi: 10.1038/srep41323
Kassambara A. Mundt F. (2017). Package ‘factoextra’. Extract visualize results multivariate Data analyses 76 (2), 26–27.
Kozich J. J. Westcott S. L. Baxter N. T. Highlander S. K. Schloss P. D. (2013). Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120. doi: 10.1128/AEM.01043-13
Kwok K. W. H. Souissi S. Dur G. Won E.-J. Lee J.-S. (2015). ““Chapter 12 - copepods as references species in estuarine and marine waters,”,” in Aquatic Ecotoxicology. Eds. Amiard-Triquet C. Amiard J.-C. Mouneyrac C. (London: Academic Press), 281–308. doi: 10.1016/B978-0-12-800949-9.00012-7
Laist D. W. (1997). “Impacts of marine debris: entanglement of marine life in marine debris including a comprehensive list of species with entanglement and ingestion records,” in Marine Debris: Sources, Impacts, and Solutions Springer Series on Environmental Management. Eds. Coe J. M. Rogers D. B. (New York: NY: Springer), 99–139. doi: 10.1007/978-1-4613-8486-1_10
Lee K.-W. Shim W. J. Kwon O. Y. Kang J.-H. (2013). Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. Environ. Sci. Technol. 47, 11278–11283. doi: 10.1021/es401932b
Li L.-L. Amara R. Souissi S. Dehaut A. Duflos G. Monchy S. (2020). Impacts of microplastics exposure on mussel (Mytilus edulis) gut microbiota. Sci. Total Environ. 745, 141018. doi: 10.1016/j.scitotenv.2020.141018
Li S. Wang P. Zhang C. Zhou X. Yin Z. Hu T. et al. (2020). Influence of polystyrene microplastics on the growth, photosynthetic efficiency and aggregation of freshwater microalgae Chlamydomonas reinhardtii. Sci. Total Environ. 714, 136767. doi: 10.1016/j.scitotenv.2020.136767
Lindeque P. K. Cole M. Coppock R. L. Lewis C. N. Miller R. Z. Watts A. J. R. et al. (2020). Are we underestimating microplastic abundance in the marine environment? A comparison of microplastic capture with nets of different mesh-size. Environ. pollut. 265, 114721. doi: 10.1016/j.envpol.2020.114721
Lobelle D. Cunliffe M. (2011). Early microbial biofilm formation on marine plastic debris. Mar. pollut. Bull. 62, 197–200. doi: 10.1016/j.marpolbul.2010.10.013
Lopez-Joven C. Rolland J.-L. Haffner P. Caro A. Roques C. Carré C. et al. (2018). Oyster farming, temperature, and plankton influence the dynamics of pathogenic vibrios in the Thau Lagoon. Front. Microbiol. 9. doi: 10.3389/fmicb.2018.02530
Lu L. Wan Z. Luo T. Fu Z. Jin Y. (2018). Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Sci. Total Environ. 631–632, 449–458. doi: 10.1016/j.scitotenv.2018.03.051
Lusher A. (2015). Microplastics in the marine environment: distribution, interactions and effects. Mar. anthropogenic Litter, 245–307. doi: 10.1007/978-3-319-16510-3_10
Maechler M. Rousseeuw P. Struyf A. Hubert M. Hornik K. Studer M. et al. (2013). Package ‘cluster’ (Dosegljivo na).
Man W. H. de Steenhuijsen Piters W. A. A. Bogaert D. (2017). The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat. Rev. Microbiol. 15, 259–270. doi: 10.1038/nrmicro.2017.14
Michalec F.-G. Holzner M. Barras A. Lacoste A.-S. Brunet L. Lee J.-S. et al. (2017). Short-term exposure to gold nanoparticle suspension impairs swimming behavior in a widespread calanoid copepod. Environ. pollut. 228, 102–110. doi: 10.1016/j.envpol.2017.04.084
Muthukumar T. Aravinthan A. Lakshmi K. Venkatesan R. Vedaprakash L. Doble M. (2011). Fouling and stability of polymers and composites in marine environment. Int. Biodeterior. Biodegrad. 65, 276–284. doi: 10.1016/j.ibiod.2010.11.012
Napper I. E. Bakir A. Rowland S. J. Thompson R. C. (2015). Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Mar. pollut. Bull. 99, 178–185. doi: 10.1016/j.marpolbul.2015.07.029
Napper I. E. Thompson R. C. (2016). Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions. Mar. pollut. Bull. 112, 39–45. doi: 10.1016/j.marpolbul.2016.09.025
Neuwirth E. Neuwirth M. E. (2011). Package ‘RColorBrewer’. Phys. Rev. D—Part. Fields Gravit. Cosmol. 84, 1–5.
Nicholson J. K. Holmes E. Kinross J. Burcelin R. Gibson G. Jia W. et al. (2012). Host-gut microbiota metabolic interactions. Science 336, 1262–1267. doi: 10.1126/science.1223813
Oberbeckmann S. Löder M. G. J. Labrenz M. Oberbeckmann S. Löder M. G. J. Labrenz M. (2015). Marine microplastic-associated biofilms – a review. Environ. Chem. 12, 551–562. doi: 10.1071/EN15069
Paul-Pont I. Tallec K. Gonzalez-Fernandez C. Lambert C. Vincent D. Mazurais D. et al. (2018). Constraints and priorities for conducting experimental exposures of marine organisms to microplastics. Front. Mar. Sci. 5. doi: 10.3389/fmars.2018.00252
Peng L. Fu D. Qi H. Lan C. Q. Yu H. Ge C. (2020). Micro- and nano-plastics in marine environment: Source, distribution and threats — A review. Sci. Total Environ. 698, 134254. doi: 10.1016/j.scitotenv.2019.134254
Plastics, the facts (2021). European Plastics. (Brussels: Plastics Europe).
Qiao R. Deng Y. Zhang S. Wolosker M. B. Zhu Q. Ren H. et al. (2019). Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish. Chemosphere 236, 124334. doi: 10.1016/j.chemosphere.2019.07.065
Quast C. Pruesse E. Yilmaz P. Gerken J. Schweer T. Yarza P. et al. (2012). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. doi: 10.1093/nar/gks1219
Romeo T. Pietro B. Pedà C. Consoli P. Andaloro F. Fossi M. C. (2015). First evidence of presence of plastic debris in stomach of large pelagic fish in the Mediterranean Sea. Mar. Pollut. Bull. 95, 358–361. doi: 10.1016/j.marpolbul.2015.04.048
Roux F. L. Gay M. Lambert C. Waechter M. Poubalanne S. Chollet B. et al. (2002). Comparative analysis of Vibrio splendidus-related strains isolated during Crassostrea gigas mortality events. Aquat. Living Resour. 15, 251–258. doi: 10.1016/S0990-7440(02)01176-2
Schloss P. D. Gevers D. Westcott S. L. (2011). Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PloS One 6, e27310. doi: 10.1371/journal.pone.0027310
Sheavly S. B. Register K. M. (2007). Marine debris & Plastics: environmental concerns, sources, impacts and solutions. J. Polym. Environ. 15, 301–305. doi: 10.1007/s10924-007-0074-3
Souissi A. Hwang J.-S. Souissi S. (2021). Reproductive trade-offs of the estuarine copepod Eurytemora affinis under different thermal and haline regimes. Sci. Rep. 11, 20139. doi: 10.1038/s41598-021-99703-0
Souissi A. Souissi S. Devreker D. Hwang J.-S. (2010). Occurence of intersexuality in a laboratory culture of the copepod Eurytemora affinis from the Seine estuary (France). Mar. Biol. 157, 851–861. doi: 10.1007/s00227-009-1368-x
Souissi A. Souissi S. Hwang J.-S. (2016). Evaluation of the copepod Eurytemora affinis life history response to temperature and salinity increases. Zool. Stud. 55, e4. doi: 10.6620/ZS.2016.55-04
Tamplin M. L. Gauzens A. L. Huq A. Sack D. A. Colwell R. R. (1990). Attachment of Vibrio cholerae serogroup O1 to zooplankton and phytoplankton of Bangladesh waters. Appl. Environ. Microbiol. 56, 1977–1980. doi: 10.1128/aem.56.6.1977-1980.1990
Tanaka K. Takada H. Yamashita R. Mizukawa K. Fukuwaka M. Watanuki Y. (2013). Accumulation of plastic-derived chemicals in tissues of seabirds ingesting marine plastics. Mar. Pollut. Bull. 69, 219–222. doi: 10.1016/j.marpolbul.2012.12.010
Teng F. Darveekaran Nair S. S. Zhu P. Li S. Huang S. Li X. et al. (2018). Impact of DNA extraction method and targeted 16S-rRNA hypervariable region on oral microbiota profiling. Sci. Rep. 8, 16321. doi: 10.1038/s41598-018-34294-x
Thery J. Bialais C. Kazour M. Moreau M. Dufour D. Benali S. et al. (2022). A new method for microplastics identification in copepods. Front. Environ. Chem. 3. doi: 10.3389/fenvc.2022.905303
Turner J. T. (2004). The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool. Stud. 43 (2), 255–266.
Von Moos N. Burkhardt-Holm P. Köhler A. (2012). Uptake and Effects of Microplastics on Cells and Tissue of the Blue Mussel Mytilus edulis L. after an Experimental Exposure. Environ. Sci. Technol. 46, 11327–11335. doi: 10.1021/es302332w
Wright S. L. Thompson R. C. Galloway T. S. (2013). The physical impacts of microplastics on marine organisms: A review. Environ. pollut. 178, 483–492. doi: 10.1016/j.envpol.2013.02.031
Zettler E. R. Mincer T. J. Amaral-Zettler L. A. (2013). Life in the “Plastisphere”: microbial communities on plastic marine debris. Environ. Sci. Technol. 47, 7137–7146. doi: 10.1021/es401288x
Zhang C. Jeong C.-B. Lee J.-S. Wang D. Wang M. (2019). Transgenerational proteome plasticity in resilience of a marine copepod in response to environmentally relevant concentrations of microplastics. Environ. Sci. Technol. 53, 8426–8436. doi: 10.1021/acs.est.9b02525
Zhang C. Li F. Liu X. Xie L. Zhang Y. T. Mu J. (2023). Polylactic acid (PLA), polyethylene terephthalate (PET), and polystyrene (PS) microplastics differently affect the gut microbiota of marine medaka (Oryzias melastigma) after individual and combined exposure with sulfamethazine. Aquat. Toxicol. 259, 106522. doi: 10.1016/j.aquatox.2023.106522
Zhang C. Zhang M. Wang S. Han R. Cao Y. Hua W. et al. (2010). Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J. 4, 232–241. doi: 10.1038/ismej.2009.112
Zhu B.-K. Fang Y.-M. Zhu D. Christie P. Ke X. Zhu Y.-G. (2018). Exposure to nanoplastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus. Environ. Pollut. 239, 408–415. doi: 10.1016/j.envpol.2018.04.017