[en] The all-surface nature of two-dimensional (2D) materials renders them highly sensitive to environmental changes, enabling the on-demand tailoring of their physical properties. Transition metal dichalcogenides, such as 2H molybdenum disulfide (MoS2), can be used as a sensory material capable of discriminating molecules possessing a similar structure with a high sensitivity. Among them, the identification of isomers represents an unexplored and challenging case. Here, we demonstrate that chemical functionalization of defect-engineered monolayer MoS2 enables isomer discrimination via a field-effect transistor readout. A multiscale characterization comprising X-ray photoelectron spectroscopy, Raman spectroscopy, photoluminescence spectroscopy, and electrical measurement corroborated by theoretical calculations revealed that monolayer MoS2 exhibits exceptional sensitivity to the differences in the dipolar nature of molecules arising from their chemical structure such as the one in difluorobenzenethiol isomers, allowing their precise recognition. Our findings underscore the potential of 2D materials for molecular discrimination purposes, in particular for the identification of complex isomers.
Disciplines :
Chemistry
Author, co-author :
Han, Bin; Université de Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France
Gali, Sai Manoj ; Université de Mons - UMONS > Faculté des Science > Service de Chimie des matériaux nouveaux
Dai, Shuting; Université de Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France ; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
Beljonne, David ; Université de Mons - UMONS > Faculté des Science > Service de Chimie des matériaux nouveaux
Samorì, Paolo; Université de Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France
Language :
English
Title :
Isomer Discrimination via Defect Engineering in Monolayer MoS2.
R400 - Institut de Recherche en Science et Ingénierie des Matériaux Complexys
Funders :
Agence Nationale de la Recherche Centre International de Recherche aux Fronti?res de la Chimie China Scholarship Council Institut Universitaire de France H2020 European Research Council
Funding text :
This work was supported by the EC through the ERC project SUPRA2DMAT (GA-833707) and the Graphene Flagship Core 3 project (GA-881603) as well as the Labex project CSC (ANR-10LABX-0026 CSC) within the Investissement d’Avenir program ANR-10-IDEX-0002-02, the International Center for Frontier Research in Chemistry, the Institut Universitaire de France (IUF), and the Chinese Scholarship Council. The computational resources in Mons are supported by the FNRS “Consortium des Equipements de Calcul Intensif–CECI” program Grant No. 2.5020.11 and by the Walloon Region (ZENOBE Tier-1 supercomputer, under grant 1117545). S.M.G. is Chargé de Recherche–FNRS, and D.B. is Research Director–FNRS.
Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D Transition Metal Dichalcogenides. Nat. Rev. Mater. 2017, 2 ( 8), 17033, 10.1038/natrevmats.2017.33
Wang, S.; Liu, X.; Xu, M.; Liu, L.; Yang, D.; Zhou, P. Two-Dimensional Devices and Integration Towards the Silicon Lines. Nat. Mater. 2022, 21 ( 11), 1225- 1239, 10.1038/s41563-022-01383-2
Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H. The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nat. Chem. 2013, 5 ( 4), 263- 275, 10.1038/nchem.1589
Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nat. Nanotechnol. 2012, 7 ( 11), 699- 712, 10.1038/nnano.2012.193
Mak, K. F.; He, K.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly Bound Trions in Monolayer MoS2. Nat. Mater. 2013, 12 ( 3), 207- 211, 10.1038/nmat3505
Liu, Y.; Weiss, N. O.; Duan, X.; Cheng, H.-C.; Huang, Y.; Duan, X. Van der Waals Heterostructures and Devices. Nat. Rev. Mater. 2016, 1 ( 9), 16042, 10.1038/natrevmats.2016.42
Zhao, Y.; Gobbi, M.; Hueso, L. E.; Samorì, P. Molecular Approach to Engineer Two-Dimensional Devices for CMOS and beyond-CMOS Applications. Chem. Rev. 2022, 122 ( 1), 50- 131, 10.1021/acs.chemrev.1c00497
Bertolazzi, S.; Gobbi, M.; Zhao, Y.; Backes, C.; Samorì, P. Molecular Chemistry Approaches for Tuning the Properties of Two-Dimensional Transition Metal Dichalcogenides. Chem. Soc. Rev. 2018, 47 ( 17), 6845- 6888, 10.1039/C8CS00169C
Anichini, C.; Czepa, W.; Pakulski, D.; Aliprandi, A.; Ciesielski, A.; Samorì, P. Chemical Sensing with 2D Materials. Chem. Soc. Rev. 2018, 47 ( 13), 4860- 4908, 10.1039/C8CS00417J
Bertolazzi, S.; Bonacchi, S.; Nan, G.; Pershin, A.; Beljonne, D.; Samorì, P. Engineering Chemically Active Defects in Monolayer MoS2 Transistors via Ion-Beam Irradiation and Their Healing via Vapor Deposition of Alkanethiols. Adv. Mater. 2017, 29 ( 18), 1606760, 10.1002/adma.201606760
Chen, X.; Berner, N. C.; Backes, C.; Duesberg, G. S.; McDonald, A. R. Functionalization of Two-Dimensional MoS2: On the Reaction Between MoS2 and Organic Thiols. Angew. Chem., Int. Ed. 2016, 55 ( 19), 5803- 5808, 10.1002/anie.201510219
Bussolotti, F.; Yang, J.; Kawai, H.; Wong, C. P. Y.; Goh, K. E. J. Impact of S-Vacancies on the Charge Injection Barrier at the Electrical Contact with the MoS2 Monolayer. ACS Nano 2021, 15 ( 2), 2686- 2697, 10.1021/acsnano.0c07982
Roy, S.; Choi, W.; Jeon, S.; Kim, D.-H.; Kim, H.; Yun, S. J.; Lee, Y.; Lee, J.; Kim, Y.-M.; Kim, J. Atomic Observation of Filling Vacancies in Monolayer Transition Metal Sulfides by Chemically Sourced Sulfur Atoms. Nano Lett. 2018, 18 ( 7), 4523- 4530, 10.1021/acs.nanolett.8b01714
Xu, Y.; Wang, L.; Liu, X.; Zhang, S.; Liu, C.; Yan, D.; Zeng, Y.; Pei, Y.; Liu, Y.; Luo, S. Monolayer MoS2 with S Vacancies from Interlayer Spacing Expanded Counterparts for Highly Efficient Electrochemical Hydrogen Production. J. Mater. Chem. A 2016, 4 ( 42), 16524- 16530, 10.1039/C6TA06534A
Yin, Y.; Han, J.; Zhang, Y.; Zhang, X.; Xu, P.; Yuan, Q.; Samad, L.; Wang, X.; Wang, Y.; Zhang, Z.; Zhang, P.; Cao, X.; Song, B.; Jin, S. Contributions of Phase, Sulfur Vacancies, and Edges to the Hydrogen Evolution Reaction Catalytic Activity of Porous Molybdenum Disulfide Nanosheets. J. Am. Chem. Soc. 2016, 138 ( 25), 7965- 7972, 10.1021/jacs.6b03714
Chou, S. S.; De, M.; Kim, J.; Byun, S.; Dykstra, C.; Yu, J.; Huang, J.; Dravid, V. P. Ligand Conjugation of Chemically Exfoliated MoS2. J. Am. Chem. Soc. 2013, 135 ( 12), 4584- 4587, 10.1021/ja310929s
Ippolito, S.; Kelly, A. G.; Furlan de Oliveira, R.; Stoeckel, M.-A.; Iglesias, D.; Roy, A.; Downing, C.; Bian, Z.; Lombardi, L.; Samad, Y. A.; Nicolosi, V.; Ferrari, A. C.; Coleman, J. N.; Samorì, P. Covalently Interconnected Transition Metal Dichalcogenide Networks via Defect Engineering for High-Performance Electronic Devices. Nat. Nanotechnol. 2021, 16, 592- 598, 10.1038/s41565-021-00857-9
Wang, Z.; Li, R.; Su, C.; Loh, K. P. Intercalated Phases of Transition Metal Dichalcogenides. SmartMat 2020, 1 ( 1), e1013 10.1002/smm2.1013
Lin, Z.; Carvalho, B. R.; Kahn, E.; Lv, R.; Rao, R.; Terrones, H.; Pimenta, M. A.; Terrones, M. Defect Engineering of Two-Dimensional Transition Metal Dichalcogenides. 2D Materials 2016, 3 ( 2), 022002, 10.1088/2053-1583/3/2/022002
Komsa, H.-P.; Krasheninnikov, A. V. Native Defects in Bulk and Monolayer MoS2 from First Principles. Phys. Rev. B 2015, 91 ( 12), 125304, 10.1103/PhysRevB.91.125304
Liu, D.; Chen, X.; Li, D.; Wang, F.; Luo, X.; Yang, B. Simulation of MoS2 Crystal Structure and the Experimental Study of Thermal Decomposition. J. Mol. Struct. 2010, 980 ( 1), 66- 71, 10.1016/j.molstruc.2010.06.038
Mitterreiter, E.; Schuler, B.; Micevic, A.; Hernangómez-Pérez, D.; Barthelmi, K.; Cochrane, K. A.; Kiemle, J.; Sigger, F.; Klein, J.; Wong, E.; Barnard, E. S.; Watanabe, K.; Taniguchi, T.; Lorke, M.; Jahnke, F.; Finley, J. J.; Schwartzberg, A. M.; Qiu, D. Y.; Refaely-Abramson, S.; Holleitner, A. W.; Weber-Bargioni, A.; Kastl, C. The Role of Chalcogen Vacancies for Atomic Defect Emission in MoS2. Nat. Commun. 2021, 12 ( 1), 3822, 10.1038/s41467-021-24102-y
Donarelli, M.; Bisti, F.; Perrozzi, F.; Ottaviano, L. Tunable Sulfur Desorption in Exfoliated MoS2 by Means of Thermal Annealing in Ultra-High Vacuum. Chem. Phys. Lett. 2013, 588, 198- 202, 10.1016/j.cplett.2013.10.034
Mignuzzi, S.; Pollard, A. J.; Bonini, N.; Brennan, B.; Gilmore, I. S.; Pimenta, M. A.; Richards, D.; Roy, D. Effect of Disorder on Raman Scattering of Single-Layer MoS2. Phys. Rev. B 2015, 91 ( 19), 195411, 10.1103/PhysRevB.91.195411
Parkin, W. M.; Balan, A.; Liang, L.; Das, P. M.; Lamparski, M.; Naylor, C. H.; Rodríguez-Manzo, J. A.; Johnson, A. T. C.; Meunier, V.; Drndić, M. Raman Shifts in Electron-Irradiated Monolayer MoS2. ACS Nano 2016, 10 ( 4), 4134- 4142, 10.1021/acsnano.5b07388
Giannazzo, F.; Fisichella, G.; Greco, G.; Di Franco, S.; Deretzis, I.; La Magna, A.; Bongiorno, C.; Nicotra, G.; Spinella, C.; Scopelliti, M.; Pignataro, B.; Agnello, S.; Roccaforte, F. Ambipolar MoS2 Transistors by Nanoscale Tailoring of Schottky Barrier Using Oxygen Plasma Functionalization. ACS Appl. Mater. Interfaces 2017, 9 ( 27), 23164- 23174, 10.1021/acsami.7b04919
Tosun, M.; Chan, L.; Amani, M.; Roy, T.; Ahn, G. H.; Taheri, P.; Carraro, C.; Ager, J. W.; Maboudian, R.; Javey, A. Air-Stable n-Doping of WSe2 by Anion Vacancy Formation with Mild Plasma Treatment. ACS Nano 2016, 10 ( 7), 6853- 6860, 10.1021/acsnano.6b02521
Daukiya, L.; Seibel, J.; De Feyter, S. Chemical Modification of 2D Materials Using Molecules and Assemblies of Molecules. Adv. Phys. X 2019, 4 ( 1), 1625723, 10.1080/23746149.2019.1625723
Hu, Z.; Wu, Z.; Han, C.; He, J.; Ni, Z.; Chen, W. Two-Dimensional Transition Metal Dichalcogenides: Interface and Defect Engineering. Chem. Soc. Rev. 2018, 47 ( 9), 3100- 3128, 10.1039/C8CS00024G
Brill, A. R.; Koren, E.; de Ruiter, G. Molecular Functionalization of 2D Materials: from Atomically Planar 2D Architectures to Off-Plane 3D Functional Materials. J. Mater. Chem. C 2021, 9 ( 35), 11569- 11587, 10.1039/D1TC01534F
Makarova, M.; Okawa, Y.; Aono, M. Selective Adsorption of Thiol Molecules at Sulfur Vacancies on MoS2(0001), Followed by Vacancy Repair via S-C Dissociation. J. Phys. Chem. C 2012, 116 ( 42), 22411- 22416, 10.1021/jp307267h
Wang, B.; Huynh, T. P.; Wu, W.; Hayek, N.; Do, T. T.; Cancilla, J. C.; Torrecilla, J. S.; Nahid, M. M.; Colwell, J. M.; Gazit, O. M.; Puniredd, S. R.; McNeill, C. R.; Sonar, P.; Haick, H. A Highly Sensitive Diketopyrrolopyrrole-Based Ambipolar Transistor for Selective Detection and Discrimination of Xylene Isomers. Adv. Mater. 2016, 28 ( 21), 4012- 4018, 10.1002/adma.201505641
Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Adv. Funct. Mater. 2012, 22 ( 7), 1385- 1390, 10.1002/adfm.201102111
Zhao, Y.; Ippolito, S.; Samorì, P. Functionalization of 2D Materials with Photosensitive Molecules: From Light-Responsive Hybrid Systems to Multifunctional Devices. Adv. Opt. Mater. 2019, 7 ( 16), 1900286, 10.1002/adom.201900286
Gobbi, M.; Orgiu, E.; Samorì, P. When 2D Materials Meet Molecules: Opportunities and Challenges of Hybrid Organic/Inorganic van der Waals Heterostructures. Adv. Mater. 2018, 30 ( 18), 1706103, 10.1002/adma.201706103
Liu, Y.; Guo, J.; Zhu, E.; Liao, L.; Lee, S.-J.; Ding, M.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. Approaching the Schottky-Mott Limit in Van der Waals Metal-Semiconductor Junctions. Nature 2018, 557 ( 7707), 696- 700, 10.1038/s41586-018-0129-8
Han, B.; Zhao, Y.; Ma, C.; Wang, C.; Tian, X.; Wang, Y.; Hu, W.; Samorì, P. Asymmetric Chemical Functionalization of Top-Contact Electrodes: Tuning the Charge Injection for High-Performance MoS2 Field-Effect Transistors and Schottky Diodes. Adv. Mater. 2022, 34 ( 12), 2109445, 10.1002/adma.202109445
Wang, Y.; Gali, S. M.; Slassi, A.; Beljonne, D.; Samorì, P. Collective Dipole-Dominated Doping of Monolayer MoS2: Orientation and Magnitude Control via the Supramolecular Approach. Adv. Funct. Mater. 2020, 30 ( 36), 2002846, 10.1002/adfm.202002846
Sim, D. M.; Kim, M.; Yim, S.; Choi, M.-J.; Choi, J.; Yoo, S.; Jung, Y. S. Controlled Doping of Vacancy-Containing Few-Layer MoS2 via Highly Stable Thiol-Based Molecular Chemisorption. ACS Nano 2015, 9 ( 12), 12115- 12123, 10.1021/acsnano.5b05173
Grünleitner, T.; Henning, A.; Bissolo, M.; Zengerle, M.; Gregoratti, L.; Amati, M.; Zeller, P.; Eichhorn, J.; Stier, A. V.; Holleitner, A. W.; Finley, J. J.; Sharp, I. D. Real-Time Investigation of Sulfur Vacancy Generation and Passivation in Monolayer Molybdenum Disulfide via in situ X-ray Photoelectron Spectromicroscopy. ACS Nano 2022, 16 ( 12), 20364- 20375, 10.1021/acsnano.2c06317
Zhang, S.; Hill, H. M.; Moudgil, K.; Richter, C. A.; Hight Walker, A. R.; Barlow, S.; Marder, S. R.; Hacker, C. A.; Pookpanratana, S. J. Controllable, Wide-Ranging n-Doping and p-Doping of Monolayer Group 6 Transition-Metal Disulfides and Diselenides. Adv. Mater. 2018, 30 ( 36), 1802991, 10.1002/adma.201802991
Vericat, C.; Vela, M. E.; Benitez, G.; Carro, P.; Salvarezza, R. C. Self-Assembled Monolayers of Thiols and Dithiols on Gold: New Challenges for A Well-Known System. Chem. Soc. Rev. 2010, 39 ( 5), 1805- 1834, 10.1039/b907301a
Han, B.; Li, Y.; Ji, X.; Song, X.; Ding, S.; Li, B.; Khalid, H.; Zhang, Y.; Xu, X.; Tian, L.; Dong, H.; Yu, X.; Hu, W. Systematic Modulation of Charge Transport in Molecular Devices through Facile Control of Molecule-Electrode Coupling Using a Double Self-Assembled Monolayer Nanowire Junction. J. Am. Chem. Soc. 2020, 142 ( 21), 9708- 9717, 10.1021/jacs.0c02215
Zhao, Y.; Gali, S. M.; Wang, C.; Pershin, A.; Slassi, A.; Beljonne, D.; Samorì, P. Molecular Functionalization of Chemically Active Defects in WSe2 for Enhanced Opto-Electronics. Adv. Funct. Mater. 2020, 30 ( 45), 2005045, 10.1002/adfm.202005045
Foerster, A.; Gemming, S.; Seifert, G.; Tomanek, D. Chemical and Electronic Repair Mechanism of Defects in MoS2 Monolayers. ACS Nano 2017, 11 ( 10), 9989- 9996, 10.1021/acsnano.7b04162
Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable Photoluminescence of Monolayer MoS2 via Chemical Doping. Nano Lett. 2013, 13 ( 12), 5944- 5948, 10.1021/nl403036h
Wu, J.; Li, H.; Yin, Z.; Li, H.; Liu, J.; Cao, X.; Zhang, Q.; Zhang, H. Layer Thinning and Etching of Mechanically Exfoliated MoS2 Nanosheets by Thermal Annealing in Air. Small 2013, 9 ( 19), 3314- 3319, 10.1002/smll.201301542
Li, Y.; Xu, C.-Y.; Hu, P.; Zhen, L. Carrier Control of MoS2 Nanoflakes by Functional Self-Assembled Monolayers. ACS Nano 2013, 7 ( 9), 7795- 7804, 10.1021/nn402682j
Kang, D.-H.; Kim, M.-S.; Shim, J.; Jeon, J.; Park, H.-Y.; Jung, W.-S.; Yu, H.-Y.; Pang, C.-H.; Lee, S.; Park, J.-H. High-Performance Transition Metal Dichalcogenide Photodetectors Enhanced by Self-Assembled Monolayer Doping. Adv. Funct. Mater. 2015, 25 ( 27), 4219- 4227, 10.1002/adfm.201501170
Gali, S. M.; Beljonne, D. Combined Healing and Doping of Transition Metal Dichalcogenides Through Molecular Functionalization. J. Mater. Chem. C 2021, 9 ( 45), 16247- 16256, 10.1039/D1TC01329G
Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54 ( 16), 11169- 11186, 10.1103/PhysRevB.54.11169
Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to The Projector Augmented-Wave Method. Phys. Rev. B 1999, 59 ( 3), 1758- 1775, 10.1103/PhysRevB.59.1758
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 ( 18), 3865- 3868, 10.1103/PhysRevLett.77.3865
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27 ( 15), 1787- 1799, 10.1002/jcc.20495