Bulk conductivities; Chemical functionality; Fine tuning; Functionalized; Isostructural; Metalorganic frameworks (MOFs); Postfunctionalization; Reactive site; Symmetrics; Two-dimensional; Catalysis; Chemistry (all); Biochemistry; Colloid and Surface Chemistry; General Chemistry
Abstract :
[en] Two-dimensional electrically conducting metal-organic frameworks (2D-e-MOFs) have emerged as a class of highly promising functional materials for a wide range of applications. However, despite the significant recent advances in 2D-e-MOFs, developing systems that can be postsynthetically chemically functionalized, while also allowing fine-tuning of the transport properties, remains challenging. Herein, we report two isostructural 2D-e-MOFs: Ni3(HITAT)2 and Ni3(HITBim)2 based on two new 3-fold symmetric ligands: 2,3,7,8,12,13-hexaaminotriazatruxene (HATAT) and 2,3,8,9,14,15-hexaaminotribenzimidazole (HATBim), respectively, with reactive sites for postfunctionalization. Ni3(HITAT)2 and Ni3(HITBim)2 exhibit temperature-activated charge transport, with bulk conductivity values of 44 and 0.5 mS cm-1, respectively. Density functional theory analysis attributes the difference to disparities in the electron density distribution within the parent ligands: nitrogen-rich HATBim exhibits localized electron density and a notably lower lowest unoccupied molecular orbital (LUMO) energy relative to HATAT. Precise amounts of methanesulfonyl groups are covalently bonded to the N-H indole moiety within the Ni3(HITAT)2 framework, modulating the electrical conductivity by a factor of ∼20. These results provide a blueprint for the design of porous functional materials with tunable chemical functionality and electrical response.
Disciplines :
Chemistry
Author, co-author :
Apostol, Petru; Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université Catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
Gali, Sai Manoj ; Université de Mons - UMONS > Faculté des Science > Service de Chimie des matériaux nouveaux
Su, Alice; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United States
Tie, Da; Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université Catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
Zhang, Yan; Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université Catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
Pal, Shubhadeep; Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université Catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
Lin, Xiaodong ; Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université Catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
Bakuru, Vasudeva Rao; Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université Catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
Rambabu, Darsi; Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université Catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
Beljonne, David ; Université de Mons - UMONS > Faculté des Science > Service de Chimie des matériaux nouveaux
Dincă, Mircea ; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United States
Vlad, Alexandru ; Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université Catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
Language :
English
Title :
Controlling Charge Transport in 2D Conductive MOFs─The Role of Nitrogen-Rich Ligands and Chemical Functionality.
R400 - Institut de Recherche en Science et Ingénierie des Matériaux Complexys
Funders :
U.S. Department of Energy European Commission Fonds De La Recherche Scientifique - FNRS European Commission Wallon Region
Funding text :
D.T. and Y.Z. acknowledge the China Scholarship Council for the PhD scholarship. A.V. is indebted to the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 770870), as well as for the partial support from F.R.S.-FNRS through F.4552.21-P─MIS─CSA-LION grant. Research in the Dinca lab was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under award #DE-SC0023288. The computational resources in Mons are supported by the FNRS “Consortium des Equipements de Calcul Intensif–CECI” program grant no. 2.5020.11 and by the Walloon Region (ZENOBE Tier-1 supercomputer, under grant 1117545). X.L. acknowledges financial support from the Marie Skłodowska-Curie Actions (grant agreement no. 101064286) for his postdoctoral fellowship. S.M.G. and D.R. are Chargé de Recherche-FNRS, and DB is Research Director-FNRS.
Xie, L. S.; Skorupskii, G.; Dincă, M. Electrically Conductive Metal-Organic Frameworks. Chem. Rev. 2020, 120 ( 16), 8536- 8580, 10.1021/acs.chemrev.9b00766
Qiu, T.; Liang, Z.; Guo, W.; Tabassum, H.; Gao, S.; Zou, R. Metal-Organic Framework-Based Materials for Energy Conversion and Storage. ACS Energy Lett. 2020, 5 ( 2), 520- 532, 10.1021/acsenergylett.9b02625
Rambabu, D.; Lakraychi, A. E.; Wang, J.; Sieuw, L.; Gupta, D.; Apostol, P.; Chanteux, G.; Goossens, T.; Robeyns, K.; Vlad, A. An Electrically Conducting Li-Ion Metal-Organic Framework. J. Am. Chem. Soc. 2021, 143 ( 30), 11641- 11650, 10.1021/jacs.1c04591
Morozan, A.; Jaouen, F. Metal Organic Frameworks for Electrochemical Applications. Energy Environ. Sci. 2012, 5 ( 11), 9269- 9290, 10.1039/c2ee22989g
Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal-Organic Framework Materials as Chemical Sensors. Chem. Rev. 2012, 112 ( 2), 1105- 1125, 10.1021/cr200324t
Sheberla, D.; Sun, L.; Blood-Forsythe, M. A.; Er, S.; Wade, C. R.; Brozek, C. K.; Aspuru-Guzik, A.; Dincă, M. High Electrical Conductivity in Ni 3 (2,3,6,7,10,11-Hexaiminotriphenylene) 2, a Semiconducting Metal-Organic Graphene Analogue. J. Am. Chem. Soc. 2014, 136 ( 25), 8859- 8862, 10.1021/ja502765n
Kobayashi, Y.; Jacobs, B.; Allendorf, M. D.; Long, J. R. Conductivity, Doping, and Redox Chemistry of a Microporous Dithiolene-Based Metal-Organic Framework. Chem. Mater. 2010, 22 ( 14), 4120- 4122, 10.1021/cm101238m
Day, R. W.; Bediako, D. K.; Rezaee, M.; Parent, L. R.; Skorupskii, G.; Arguilla, M. Q.; Hendon, C. H.; Stassen, I.; Gianneschi, N. C.; Kim, P.; Dincă, M. Single Crystals of Electrically Conductive Two-Dimensional Metal-Organic Frameworks: Structural and Electrical Transport Properties. ACS Cent. Sci. 2019, 5 ( 12), 1959- 1964, 10.1021/acscentsci.9b01006
Wang, M.; Dong, R.; Feng, X. Two-Dimensional Conjugated Metal-Organic Frameworks (2D c-MOFs): Chemistry and Function for MOFtronics. Chem. Soc. Rev. 2021, 50 ( 4), 2764- 2793, 10.1039/D0CS01160F
Park, J.; Lee, M.; Feng, D.; Huang, Z.; Hinckley, A. C.; Yakovenko, A.; Zou, X.; Cui, Y.; Bao, Z. Stabilization of Hexaaminobenzene in a 2D Conductive Metal-Organic Framework for High Power Sodium Storage. J. Am. Chem. Soc. 2018, 140 ( 32), 10315- 10323, 10.1021/jacs.8b06020
Li, P.; Wang, B. Recent Development and Application of Conductive MOFs. Isr. J. Chem. 2018, 58 ( 9-10), 1010- 1018, 10.1002/ijch.201800078
Kang, M.; Kang, D. W.; Hong, C. S. Post-Synthetic Diamine-Functionalization of MOF-74 Type Frameworks for Effective Carbon Dioxide Separation. Dalton Trans. 2019, 48 ( 7), 2263- 2270, 10.1039/C8DT04339F
Lyu, H.; Chen, O. I.-F.; Hanikel, N.; Hossain, M. I.; Flaig, R. W.; Pei, X.; Amin, A.; Doherty, M. D.; Impastato, R. K.; Glover, T. G.; Moore, D. R.; Yaghi, O. M. Carbon Dioxide Capture Chemistry of Amino Acid Functionalized Metal-Organic Frameworks in Humid Flue Gas. J. Am. Chem. Soc. 2022, 144 ( 5), 2387- 2396, 10.1021/jacs.1c13368
Babaee, S.; Zarei, M.; Sepehrmansourie, H.; Zolfigol, M. A.; Rostamnia, S. Synthesis of Metal-Organic Frameworks MIL-101(Cr)-NH2 Containing Phosphorous acid Functional Groups: Application for the Synthesis of N-Amino-2-Pyridone and Pyrano [2,3-c]Pyrazole Derivatives via a Cooperative Vinylogous Anomeric-Based Oxidation. ACS Omega 2020, 5 ( 12), 6240- 6249, 10.1021/acsomega.9b02133
Kambe, T.; Sakamoto, R.; Hoshiko, K.; Takada, K.; Miyachi, M.; Ryu, J.-H.; Sasaki, S.; Kim, J.; Nakazato, K.; Takata, M.; Nishihara, H. π-Conjugated Nickel Bis(Dithiolene) Complex Nanosheet. J. Am. Chem. Soc. 2013, 135 ( 7), 2462- 2465, 10.1021/ja312380b
Clough, A. J.; Skelton, J. M.; Downes, C. A.; de la Rosa, A. A.; Yoo, J. W.; Walsh, A.; Melot, B. C.; Marinescu, S. C. Metallic Conductivity in a Two-Dimensional Cobalt Dithiolene Metal-Organic Framework. J. Am. Chem. Soc. 2017, 139 ( 31), 10863- 10867, 10.1021/jacs.7b05742
Yang, C.; Dong, R.; Wang, M.; Petkov, P. S.; Zhang, Z.; Wang, M.; Han, P.; Ballabio, M.; Bräuninger, S. A.; Liao, Z.; Zhang, J.; Schwotzer, F.; Zschech, E.; Klauss, H.-H.; Cánovas, E.; Kaskel, S.; Bonn, M.; Zhou, S.; Heine, T.; Feng, X. A Semiconducting Layered Metal-Organic Framework Magnet. Nat. Commun. 2019, 10 ( 1), 3260, 10.1038/s41467-019-11267-w
Nagatomi, H.; Yanai, N.; Yamada, T.; Shiraishi, K.; Kimizuka, N. Synthesis and Electric Properties of a Two-Dimensional Metal-Organic Framework Based on Phthalocyanine. Chem.─Eur. J. 2018, 24 ( 8), 1806- 1810, 10.1002/chem.201705530
Pham, H. T. B.; Choi, J. Y.; Huang, S.; Wang, X.; Claman, A.; Stodolka, M.; Yazdi, S.; Sharma, S.; Zhang, W.; Park, J. Imparting Functionality and Enhanced Surface Area to a 2D Electrically Conductive MOF via Macrocyclic Linker. J. Am. Chem. Soc. 2022, 144 ( 23), 10615- 10621, 10.1021/jacs.2c03793
Dou, J.-H.; Arguilla, M. Q.; Luo, Y.; Li, J.; Zhang, W.; Sun, L.; Mancuso, J. L.; Yang, L.; Chen, T.; Parent, L. R.; Skorupskii, G.; Libretto, N. J.; Sun, C.; Yang, M. C.; Dip, P. V.; Brignole, E. J.; Miller, J. T.; Kong, J.; Hendon, C. H.; Sun, J.; Dincă, M. Atomically Precise Single-Crystal Structures of Electrically Conducting 2D Metal-Organic Frameworks. Nat. Mater. 2021, 20 ( 2), 222- 228, 10.1038/s41563-020-00847-7
Li, X.-C.; Wang, C.-Y.; Lai, W.-Y.; Huang, W. Triazatruxene-Based Materials for Organic Electronics and Optoelectronics. J. Mater. Chem. C 2016, 4 ( 45), 10574- 10587, 10.1039/C6TC03832H
Górski, K.; Mech-Piskorz, J.; Pietraszkiewicz, M. From Truxenes to Heterotruxenes: Playing with Heteroatoms and the Symmetry of Molecules. New J. Chem. 2022, 46 ( 19), 8939- 8966, 10.1039/D2NJ00816E
Robertson, N.; Parsons, S.; MacLean, E. J.; Coxall, R. A.; Mount, A. R. Preparation, X-Ray Structure and Properties of a Hexabrominated, Symmetric Indole Trimer and Its TCNQ Adduct: A New Route to Functional Molecular Systems. J. Mater. Chem. 2000, 10 ( 9), 2043- 2047, 10.1039/b003631p
Wolfe, J. P.; Wagaw, S.; Buchwald, S. L. An Improved Catalyst System for Aromatic Carbon-Nitrogen Bond Formation: The Possible Involvement of Bis(Phosphine) Palladium Complexes as Key Intermediates. J. Am. Chem. Soc. 1996, 118 ( 30), 7215- 7216, 10.1021/ja9608306
Chen, T.; Dou, J.-H.; Yang, L.; Sun, C.; Libretto, N. J.; Skorupskii, G.; Miller, J. T.; Dincă, M. Continuous Electrical Conductivity Variation in M3(Hexaiminotriphenylene)2 (M = Co, Ni, Cu) MOF Alloys. J. Am. Chem. Soc. 2020, 142 ( 28), 12367- 12373, 10.1021/jacs.0c04458
Campbell, M. G.; Sheberla, D.; Liu, S. F.; Swager, T. M.; Dincă, M. Cu3(Hexaiminotriphenylene)2: An Electrically Conductive 2D Metal-Organic Framework for Chemiresistive Sensing. Angew. Chem., Int. Ed. 2015, 54 ( 14), 4349- 4352, 10.1002/anie.201411854
Demuth, M. C.; Hendon, C. H. Linker Aromaticity Reduces Band Dispersion in 2D Conductive Metal-Organic Frameworks. ACS Mater. Lett. 2023, 5 ( 5), 1476- 1480, 10.1021/acsmaterialslett.3c00122
Zhao, Q.; Li, S.-H.; Chai, R.-L.; Ren, X.; Zhang, C. Two-Dimensional Conductive Metal-Organic Frameworks Based on Truxene. ACS Appl. Mater. Interfaces 2020, 12 ( 6), 7504- 7509, 10.1021/acsami.9b23416
Zhao, Q.; Jiang, J.; Zhao, W.; Li, S.-H.; Mi, W.; Zhang, C. Truxone-Based Conductive Metal-Organic Frameworks for the Oxygen Reductive Reaction. J. Phys. Chem. C 2021, 125 ( 23), 12690- 12698, 10.1021/acs.jpcc.1c03418
Zheng, W.; Sun, B.; Li, D.; Gali, S. M.; Zhang, H.; Fu, S.; Di Virgilio, L.; Li, Z.; Yang, S.; Zhou, S.; Beljonne, D.; Yu, M.; Feng, X.; Wang, H. I.; Bonn, M. Band Transport by Large Fröhlich Polarons in MXenes. Nat. Phys. 2022, 18 ( 5), 544- 550, 10.1038/s41567-022-01541-y
Fu, S.; Jia, X.; Hassan, A. S.; Zhang, H.; Zheng, W.; Gao, L.; Di Virgilio, L.; Krasel, S.; Beljonne, D.; Tielrooij, K.-J.; Bonn, M.; Wang, H. I. Reversible Electrical Control of Interfacial Charge Flow across van Der Waals Interfaces. Nano Lett. 2023, 23 ( 5), 1850- 1857, 10.1021/acs.nanolett.2c04795
Fu, S.; Jin, E.; Hanayama, H.; Zheng, W.; Zhang, H.; Di Virgilio, L.; Addicoat, M. A.; Mezger, M.; Narita, A.; Bonn, M.; Müllen, K.; Wang, H. I. Outstanding Charge Mobility by Band Transport in Two-Dimensional Semiconducting Covalent Organic Frameworks. J. Am. Chem. Soc. 2022, 144 ( 16), 7489- 7496, 10.1021/jacs.2c02408
Ippolito, S.; Urban, F.; Zheng, W.; Mazzarisi, O.; Valentini, C.; Kelly, A. G.; Gali, S. M.; Bonn, M.; Beljonne, D.; Corberi, F.; Coleman, J. N.; Wang, H. I.; Samorì, P. Unveiling Charge-Transport Mechanisms in Electronic Devices Based on Defect-Engineered MoS2 Covalent Networks. Adv. Mater. 2023, 35, 2211157, 10.1002/adma.202211157
Skorupskii, G.; Trump, B. A.; Kasel, T. W.; Brown, C. M.; Hendon, C. H.; Dincă, M. Efficient and Tunable One-Dimensional Charge Transport in Layered Lanthanide Metal-Organic Frameworks. Nat. Chem. 2020, 12 ( 2), 131- 136, 10.1038/s41557-019-0372-0