Graphene and other 2D-materials (A); Interphase (B); Mechanical properties (B); Nanocomposites (A); Polymer-matrix composites (PMCs) (A); Graphene and other 2d-material (A); Graphene oxides; Mechanical property (B); Nanocomposite (A); Polymer matrices; Polymer-filler; Polymer-matrix composite (A); Thermoplastic nanocomposites; Two-dimensional; Ceramics and Composites; Engineering (all); General Engineering
Abstract :
[en] The addition of two-dimensional nanomaterials to a polymer matrix is a widely known manner to mechanically reinforce the material. The stress-transfer in the polymeric matrices, however, depends on an array of filler and matrix properties as well as on their interface. In this work, we discuss the effects of the distinct levels of interaction of graphene oxide, reduced graphene oxide and molybdenum disulfide with poly(vinyl butyral) in the reinforcement of the polymer. For that, we employed the micromechanical analysis model originally developed by Young et al., which describes the reinforcement behavior of graphene nanoplatelets in a wide range of polymer matrices. Then, using an innovative approach derived from such analysis, we propose novel methods to mathematically evaluate the effects of the filler content upon the polymer/filler interface, and for the determination of the mechanical percolation threshold.
Disciplines :
Materials science & engineering
Author, co-author :
Cremonezzi, Josué Marciano de Oliveira ; MackGraphe – Mackenzie Institute for Graphene and Nanotechnology, São Paulo, Brazil ; School of Engineering, Mackenzie Presbyterian University, São Paulo, Brazil ; Laboratory of Polymeric and Composite Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Mons, Belgium
Pinto, Gabriel Matheus; MackGraphe – Mackenzie Institute for Graphene and Nanotechnology, São Paulo, Brazil ; School of Engineering, Mackenzie Presbyterian University, São Paulo, Brazil
Mincheva, Rosica ; Université de Mons - UMONS > Faculté des Science > Service des Matériaux Polymères et Composites
Andrade, Ricardo Jorge Espanhol ; MackGraphe – Mackenzie Institute for Graphene and Nanotechnology, São Paulo, Brazil ; School of Engineering, Mackenzie Presbyterian University, São Paulo, Brazil
Raquez, Jean-Marie ; Université de Mons - UMONS > Faculté des Science > Service des Matériaux Polymères et Composites
Fechine, Guilhermino José Macedo; MackGraphe – Mackenzie Institute for Graphene and Nanotechnology, São Paulo, Brazil ; School of Engineering, Mackenzie Presbyterian University, São Paulo, Brazil
Language :
English
Title :
The micromechanics of graphene oxide and molybdenum disulfide in thermoplastic nanocomposites and the impact to the polymer-filler interphase
R400 - Institut de Recherche en Science et Ingénierie des Matériaux
Funding text :
Funding: This work was supported by the Brazilian National Council for Scientific and Technological Development (CNPq) (processes 140241/2019-1 , 307665/2018-6 , and 305109/2022-7 ), Coordination of Superior Level Staff Improvement (CAPES) , Brazil - Finance Code 001 [PrInt grant numbers 88887.583658/2020-00 , and 88887.310339/2018–00 ], and The São Paulo Research Foundation (FAPESP) (processes 2020/11496-0 and 2021/07858-7 ). The study was also supported by the National Institute of Science and Technology of Carbon Nanomaterials of CNPq (INCT-Nanocarbono) .
Valera, T.S., Demarquette, N.R., Polymer toughening using residue of recycled windshields: PVB film as impact modifier. Eur. Polym. J. 44 (2008), 755–768, 10.1016/j.eurpolymj.2007.12.012.
Bai, Y., Chen, Y., Wang, Q., Wang, T., Poly(vinyl butyral) based polymer networks with dual-responsive shape memory and self-healing properties. J. Mater. Chem. A Mater., 2, 2014, 9169, 10.1039/c4ta00856a.
Pandele, A.M., Ionita, M., Crica, L., Dinescu, S., Costache, M., Iovu, H., Synthesis, characterization, and in vitro studies of graphene oxide/chitosan–polyvinyl alcohol films. Carbohydr. Polym. 102 (2014), 813–820, 10.1016/j.carbpol.2013.10.085.
Cascone, E., David, D.J., Di Lorenzo, M.L., Karasz, F.E., Macknight, W.J., Martuscelli, E., Raimo, M., Blends of polypropylene with poly(vinyl butyral). J. Appl. Polym. Sci. 82 (2001), 2934–2946, 10.1002/app.2149.
Fernández, M.D., Fernández, M.J., Hoces, P., Synthesis of poly(vinyl butyral)s in homogeneous phase and their thermal properties. J. Appl. Polym. Sci. 102 (2006), 5007–5017, 10.1002/app.25004.
Zhou, Z.M., David, D.J., Macknight, W.J., Karasz, F.E., Synthesis characterization and miscibility of polyvinyl butyrals of varying vinyl alcohol contents. Turk. J. Chem. 21 (1997), 229–238.
Dhaliwal, A.K., Hay, J.N., The characterization of polyvinyl butyral by thermal analysis. Thermochim. Acta 391 (2002), 245–255, 10.1016/S0040-6031(02)00187-9.
Mistler, R.E., Bianchi, E., Wade, B., Hurlbut, J., Evaluation of an environmentally friendly plasticizer for polyvinyl butyral for use in tape casting. Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials: Ceramic Engineering and Science Proceedings, 2007, American Ceramic Society, Cocoa Beach, 27–34.
Xu, J., Li, Y., Ge, D., Liu, B., Zhu, M., Experimental investigation on constitutive behavior of PVB under impact loading. Int. J. Impact Eng. 38 (2011), 106–114, 10.1016/j.ijimpeng.2010.10.001.
Liu, B., Sun, Y., Li, Y., Wang, Y., Ge, D., Xu, J., Systematic experimental study on mechanical behavior of PVB (polyvinyl butyral) material under various loading conditions. Polym. Eng. Sci. 52 (2012), 1137–1147, 10.1002/pen.22175.
360 Research Reports. Global PVB Film Sales Market Report 2020., 2020, 1–143.
Alva, G., Lin, Y., Fang, G., Thermal and electrical characterization of polymer/ceramic composites with polyvinyl butyral matrix. Mater. Chem. Phys. 205 (2018), 401–415, 10.1016/j.matchemphys.2017.11.046.
Nakane, K., Kurita, T., Ogihara, T., Ogata, N., Properties of poly(vinyl butyral)/TiO2 nanocomposites formed by sol–gel process. Composites, Part B 35 (2002), 219–222, 10.1016/S1359-8368(03)00066-0.
Zanjanijam, A.R., Hajian, M., Koohmareh, G.A., Fabrication of single wall carbon nanotubes-based poly(vinyl butyral) nanocomposites with enhanced mechanical and thermal properties. J. Macromol. Sci., Pure Appl. Chem. 51 (2014), 369–377, 10.1080/10601325.2014.882703.
Stern, N., Dyamant, I., Shemer, E., Hu, X., Marom, G., Hybrid effects in the fracture toughness of polyvinyl butyral-based nanocomposites. Nanocompos. 4 (2018), 1–9, 10.1080/20550324.2018.1447827.
Huang, X., Lin, Y., Fang, G., Thermal properties of polyvinyl butyral/graphene composites as encapsulation materials for solar cells. Sol. Energy 161 (2018), 187–193, 10.1016/j.solener.2017.12.051.
Hoepfner, J.C., Loos, M.R., Pezzin, S.H., Evaluation of thermomechanical properties of polyvinyl butyral nanocomposites reinforced with graphene nanoplatelets synthesized by in situ polymerization. J. Appl. Polym. Sci., 135, 2018, 46157, 10.1002/app.46157.
Hajian, M., Reisi, M.R., Koohmareh, G.A., Jam, A.R.Z., Preparation and characterization of polyvinylbutyral/Graphene nanocomposite. J. Polym. Res., 19, 2012, 10.1007/s10965-012-9966-6.
Novoselov, K.S., Fal′ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K., A roadmap for graphene. Nature 490 (2012), 192–200, 10.1038/nature11458.
Eftekhari, A., Garcia, H., The necessity of structural irregularities for the chemical applications of graphene. Mater. Today Chem. 4 (2017), 1–16, 10.1016/j.mtchem.2017.02.003.
Li, Z., Kinloch, I.A., Young, R.J., The role of interlayer adhesion in graphene oxide upon its reinforcement of nanocomposites. Phil. Trans. Math. Phys. Eng. Sci., 374, 2016, 20150283, 10.1098/rsta.2015.0283.
Singh, A.K., Kumar, P., Late, D.J., Kumar, A., Patel, S., Singh, J., 2D layered transition metal dichalcogenides (MoS2): synthesis, applications and theoretical aspects. Appl. Mater. Today 13 (2018), 242–270, 10.1016/j.apmt.2018.09.003.
Wang, X., Xing, W., Feng, X., Yu, B., Song, L., Yeoh, G.H., Hu, Y., Enhanced mechanical and barrier properties of polyurethane nanocomposite films with randomly distributed molybdenum disulfide nanosheets. Compos. Sci. Technol. 127 (2016), 142–148, 10.1016/j.compscitech.2016.02.029.
Zhang, J., Lei, W., Schutz, J., Liu, D., Tang, B., Wang, C.H., Wang, X., Improving the gas barrier, mechanical and thermal properties of poly(vinyl alcohol) with molybdenum disulfide nanosheets. J. Polym. Sci. B Polym. Phys. 57 (2019), 406–414, 10.1002/polb.24799.
Divya, K., Sri Abirami Saraswathi, M.S., Rana, D., Alwarappan, S., Nagendran, A., Custom-made sulfonated poly (ether sulfone) nanocomposite proton exchange membranes using exfoliated molybdenum disulfide nanosheets for DMFC applications. Polymer (Guildf.) 147 (2018), 48–55, 10.1016/j.polymer.2018.05.054.
Barkan, T., Graphene: the hype versus commercial reality. Nat. Nanotechnol. 14 (2019), 904–906, 10.1038/s41565-019-0556-1.
Reiss, T., Hjelt, K., Ferrari, A.C., Graphene is on track to deliver on its promises. Nat. Nanotechnol. 14 (2019), 907–910, 10.1038/s41565-019-0557-0.
Papageorgiou, D.G., Kinloch, I.A., Young, R.J., Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 90 (2017), 75–127, 10.1016/j.pmatsci.2017.07.004.
Young, R.J., Liu, M., Kinloch, I.A., Li, S., Zhao, X., Vallés, C., Papageorgiou, D.G., The mechanics of reinforcement of polymers by graphene nanoplatelets. Compos. Sci. Technol. 154 (2018), 110–116, 10.1016/j.compscitech.2017.11.007.
Liu, M., Papageorgiou, D.G., Li, S., Lin, K., Kinloch, I.A., Young, R.J., Micromechanics of reinforcement of a graphene-based thermoplastic elastomer nanocomposite. Composites Part A 110 (2018), 84–92, 10.1016/j.compositesa.2018.04.014.
Liu, M., Kinloch, I.A., Young, R.J., Papageorgiou, D.G., Modelling mechanical percolation in graphene-reinforced elastomer nanocomposites. Compos. B Eng., 178, 2019, 107506, 10.1016/j.compositesb.2019.107506.
Chu, J., Young, R.J., Slater, T.J.A., Burnett, T.L., Coburn, B., Chichignoud, L., Vuilleumier, A., Li, Z., Realizing the theoretical stiffness of graphene in composites through confinement between carbon fibers. Compos. Part A Appl Sci Manuf 113 (2018), 311–317, 10.1016/j.compositesa.2018.07.032.
Li, Z., Chu, J., Yang, C., Hao, S., Bissett, M.A., Kinloch, I.A., Young, R.J., Effect of functional groups on the agglomeration of graphene in nanocomposites. Compos. Sci. Technol. 163 (2018), 116–122, 10.1016/j.compscitech.2018.05.016.
Andrade, C.S., Godoy, A.P.S., Benega, M.A.G., Andrade, R.J.E., Andrade, R.C., Silva, W.M., Cremonezzi, J.M. de O., Macedo, W.A. de A., Gastelois, P.L., Ribeiro, H., Taha-Tijerina, J., Micro scalable graphene oxide productions using controlled parameters in bench reactor. Nanomaterials, 2021, 10.3390/nano11081975 1975.
Cremonezzi, J.M. de O., Ribeiro, H., Andrade, R.J.E., Fechine, G.J.M., Characterization strategy for graphene oxide and molybdenum disulfide: proceedings based on the ISO/TS 21356-1:2021 standard. FlatChem, 36, 2022, 100448, 10.1016/j.flatc.2022.100448.
Liu, H., Li, Y., Dai, K., Zheng, G., Liu, C., Shen, C., Yan, X., Guo, J., Guo, Z., Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. J. Mater. Chem. C Mater. 4 (2015), 157–166, 10.1039/c5tc02751a.
Krishnamoorthy, K., Veerapandian, M., Yun, K., Kim, S.-J., The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon N. Y. 53 (2013), 38–49, 10.1016/j.carbon.2012.10.013.
Liao, K.-H., Aoyama, S., Abdala, A.A., Macosko, C., Does graphene change T g of nanocomposites?. Macromolecules 47 (2014), 8311–8319, 10.1021/ma501799z.
Barick, A.K., Tripathy, D.K., Thermal and dynamic mechanical characterization of thermoplastic polyurethane/organoclay nanocomposites prepared by melt compounding. Mater. Sci. Eng. 527 (2010), 812–823, 10.1016/j.msea.2009.10.063.
Wakabayashi, K., Pierre, C., Diking, D.A., Ruoff, R.S., Ramanathan, T., Catherine Brinson, L., Torkelson, J.M., Polymer - graphite nanocomposites: effective dispersion and major property enhancement via solid-state shear pulverization. Macromolecules 41 (2008), 1905–1908, 10.1021/ma071687b.
Papageorgiou, D.G., Kinloch, I.A., Young, R.J., Graphene/elastomer nanocomposites. Carbon N. Y. 95 (2015), 460–484, 10.1016/j.carbon.2015.08.055.
Ferreira, E.H.C., de Lima, L.P., Fechine, G.J.M., The “superlubricity state” of carbonaceous fillers on polymer composites. Macromol. Chem. Phys., 2020, 2000192, 10.1002/macp.202000192 1–7.
Ferreira, E.H.C., Andrade, R.J.E., Fechine, G.J.M., The “superlubricity state” of carbonaceous fillers on polyethylene-based composites in a Molten state. Macromolecules 52 (2019), 9620–9631, 10.1021/acs.macromol.9b01746.
Mefford, C.H., Qiao, Y., Salviato, M., Failure behavior and scaling of graphene nanocomposites. Compos. Struct. 176 (2017), 961–972, 10.1016/j.compstruct.2017.06.013.
Quaresimin, M., Schulte, K., Zappalorto, M., Chandrasekaran, S., Toughening mechanisms in polymer nanocomposites: from experiments to modelling. Compos. Sci. Technol. 123 (2016), 187–204, 10.1016/j.compscitech.2015.11.027.
Gharib-Zahedi, M.R., Koochaki, A., Alaghemandi, M., Significantly Enhanced Polymer Thermal Conductivity by Confining Effect through Bilayer MoS2 Surfaces. 2021, 1–20 http://arxiv.org/abs/2108.03875.
Helal, E., Amurin, L.G., Carastan, D.J., de Sousa, R.R., David, E., Fréchette, M., Demarquette, N.R., Interfacial molecular dynamics of styrenic block copolymer-based nanocomposites with controlled spatial distribution. Polymer (Guildf.) 113 (2017), 9–26, 10.1016/j.polymer.2017.02.025.
Rodriguez, C.L.C., Nunes, M.A.B.S., Garcia, P.S., Fechine, G.J.M., Molybdenum disulfide as a filler for a polymeric matrix at an ultralow content: polystyrene case. Polym. Test., 93, 2021, 10.1016/j.polymertesting.2020.106882 undefined.