Teachers should apply the principle of reduction for more sustainable surgical simulation practice: the example of training pharyngolaryngeal surgery in a porcine model.
Otolaryngology-head and neck surgery postgraduate degree; animal model; pig; reduction principle; surgical simulation; sustainability; Medicine (all); General Medicine
Disciplines :
Otolaryngology
Author, co-author :
Payen, Caroline; Faculty of Medicine, Montpellier University, Montpellier, France
Gallet, Patrice; Otolaryngology-Head and Neck Surgery Department, Nancy Regional University Hospital, Lorraine University, Nancy, France ; Nancy-Lorraine School of Surgery, Virtual Hospital of Lorraine (HVL), Lorraine University, Nancy, France ; NGERE Team, INSERM U1256, Lorraine University, Nancy, France
Lechien, Jérome ; Université de Mons - UMONS > Faculté de Psychologie et des Sciences de l'Educatio > Service de Métrologie et Sciences du langage
Favier, Valentin; Faculty of Medicine, Montpellier University, Montpellier, France ; Research-Team ICAR, Laboratory of Computer Science, Robotics and Microelectronics of Montpellier (LIRMM), Univ. Montpellier, French National Centre for Scientific Research (CNRS), Montpellier, France ; YO-IFOS Group for Sustainable Development, Young Members of International Federation of Otolaryngology Societies, Paris, France
Language :
English
Title :
Teachers should apply the principle of reduction for more sustainable surgical simulation practice: the example of training pharyngolaryngeal surgery in a porcine model.
Rosendal AA Sloth SB Rölfing JD Bie M Jensen RD. Technical, non-technical, or both? A scoping review of skills in simulation-based surgical training. J Surg Educ. (2023) 80:731–49. 10.1016/j.jsurg.2023.02.01136906398
Sadideen H Hamaoui K Saadeddin M Kneebone R. Simulators and the simulation environment: getting the balance right in simulation-based surgical education. Int J Surg Lond Engl. (2012) 10:458–62. 10.1016/j.ijsu.2012.08.01022935356
Carsuzaa F Fieux M Bartier S Fath L Alexandru M Legré M et al. Perception of environmental issues in the head-and-neck surgery room: a preliminary study. Eur Ann Otorhinolaryngol Head Neck Dis. (2023). 10.1016/j.anorl.2023.06.00337414619
Pietrabissa A Sylla P. Green surgery: time to make a choice. Surg Endosc. (2023). 10.1007/s00464-023-10229-037430124
Vacharathit V Walsh RM Utech J Asfaw SH. Action in healthcare sustainability is a surgical imperative: this is a novel way to do it. J Surg Educ. (2022) 79:275–8. 10.1016/j.jsurg.2021.09.00234600860
Gala SG Crandall ML. Global collaboration to modernize advanced trauma life support training. J Surg Educ. (2019) 76:487–96. 10.1016/j.jsurg.2018.08.01130245060
Ratinam R Quayle M Crock J Lazarus M Fogg Q McMenamin P. Challenges in creating dissectible anatomical 3D prints for surgical teaching. J Anat. (2019) 234:419–37. 10.1111/joa.1293430710355
Toto F Torre T Pozzoli A Biroova S Ferrari E Demertzis S. Cardiac surgery simulation: step-by-step Nicks procedure in a preclinical model. Multimed Man Cardiothorac Surg MMCTS. (2023) 10:2023. 10.1510/mmcts.2023.03637428537
Tothova JD Gatto C Giurgola L Romano MR Ferrara M. 25 Simulation of eye surgery in porcine eye globes and evaluation of retinal cytotoxicity. BMJ Open Ophthalmol. (2022) 7:A11. 10.1136/bmjophth-2022-EEBA.2537282696
Yoshimoto S Soyama A Fukumoto M Hara T Hidaka M Torai S et al. Preliminary observations of an ex vivo normothermic whole blood machine perfusion in an experimental liver transplant porcine model. Transplant Proc. (2023) 55:106. 10.1016/j.transproceed.2023.03.06737117106
Lei B Sun T Ma H Li B Yang B. Application and accuracy of craniomaxillofacial plastic surgery robot in congenital craniosynostosis surgery. J Craniofac Surg. (2023) 34:1371–5. 10.1097/SCS.000000000000928336935391
Huang J Du BR Qiao WG Huang SL Xue LF Deng L et al. Endoscopic submucosal dissection training: evaluation of an ex vivo training model with continuous perfusion (ETM-CP) for hands-on teaching and training in China. Surg Endosc. (2023) 37:4774–83. 10.1007/s00464-023-09940-936914780
Burger L Sharan L Karl R Wang C Karck M De Simone R et al. Comparative evaluation of three commercially available markerless depth sensors for close-range use in surgical simulation. Int J Comput Assist Radiol Surg. (2023) 18:1109–18. 10.1007/s11548-023-02887-137140737
Hashemi N Svendsen MBS Bjerrum F Rasmussen S Tolsgaard MG Friis ML. Acquisition and usage of robotic surgical data for machine learning analysis. Surg Endosc. (2023) 37:6588–601. 10.1007/s00464-023-10214-737389741
Raison N Poulsen J Abe T Aydin A Ahmed K Dasgupta P. An evaluation of live porcine simulation training for robotic surgery. J Robot Surg. (2021) 15:429–34. 10.1007/s11701-020-01113-332654091
Wheeler T von Braun J. Climate change impacts on global food security. Science. (2013) 341:508–13. 10.1126/science.123940223908229
Andretta I Hickmann FMW Remus A Franceschi CH Mariani AB Orso C et al. Environmental impacts of pig and poultry production: insights from a systematic review. Front Vet Sci. (2021) 8:750733. 10.3389/fvets.2021.75073334778435
Favier V Ayad T Blanc F Fakhry N Andersen SAW. Use of simulation-based training of surgical technical skills among ENTs: an international YO-IFOS survey. Eur Arch Oto-Rhino-Laryngol. (2021) 278:5043–50. 10.1007/s00405-021-06846-x33914149
Favier V Kimmoun A Gatin A Gallet P. Percutaneous tracheostomy simulation training for ENT physicians in the treatment of COVID-19-positive patients. Eur Ann Otorhinolaryngol Head Neck Dis. (2020) 137:333–8. 10.1016/j.anorl.2020.06.00232624392
Alessa MA Kwak SH Lee YW Kang ML Sung HJ Ahn SH et al. Porcine as a training module for head and neck microvascular reconstruction. JoVE (J Vis Exp). (2018) 139:58104. 10.3791/58104-v30320742
Favier V Subsol G Duraes M Captier G Gallet P. Haptic fidelity: the game changer in surgical simulators for the next decade? Front Oncol. (2021) 11:713343. 10.3389/fonc.2021.71334334458151
Alcalá Rueda I Villacampa Aubá JM Encinas Vicente A Gabernet MB Guerrero CC Reparaz CCC et al. A live porcine model for surgical training in tracheostomy, neck dissection, and total laryngectomy. Eur Arch Oto-Rhino-Laryngol. (2021) 278:3081–90. 10.1007/s00405-021-06613-y33598732
Gustafson ML Hensley B Dotson M Broce M Tager A. Comparison of manikin versus porcine trachea models when teaching emergent cricothyroidotomy among emergency medicine residents. AEM Educ Train. (2019) 3:280–5. 10.1002/aet2.1033331360821
Deonarain AR Harrison RV Gordon KA Wolter NE Looi T Estrada M et al. Live porcine model for surgical training in tracheostomy and open-airway surgery. Laryngoscope. (2020) 130:2063–8. 10.1002/lary.2830931566741
Añez Simón C Serrano Gonzalvo V Carrillo Luna LH Farré Nebot V Holgado Pascual CM Grupo de investigación ANESTARRACO (IISPV). Results of a surgical cricothyrotomy workshop with a pig trachea model. Rev Esp Anestesiol Reanim. (2019) 66:129–36. 10.1016/j.redare.2018.09.01430514575
Nasser Kotby M Wahba HA Kamal E El-Makhzangy AMN Bahaa N. Animal model for training and improvement of the surgical skills in endolaryngeal microsurgery. J Voice. (2012) 26:351–7. 10.1016/j.jvoice.2011.04.00222296998
Cheng PC Cho TY Hsu WL Lo WC Wang CT Cheng PW et al. Training residents to perform tracheotomy using a live swine model. Ear Nose Throat J. (2019) 98:E87–91. 10.1177/014556131984083530974995
Gofton WT Dudek NL Wood TJ Balaa F Hamstra SJ. The ottawa surgical competency operating room evaluation (O-SCORE): a tool to assess surgical competence. Acad Med J Assoc Am Med Coll. (2012) 87:1401–7. 10.1097/ACM.0b013e318267780522914526
Smith AJ. Guidelines for planning and conducting high-quality research and testing on animals. Lab Anim Res. (2020) 36:21. 10.1186/s42826-020-00054-032665911
MacEwan MJ Dudek NL Wood TJ Gofton WT. Continued validation of the O-SCORE (Ottawa Surgical Competency Operating Room Evaluation): Use in the simulated environment. Teach Learn Med. (2016) 28:72–9. 10.1080/10401334.2015.110748326787087
Alsalamah A Campo R Tanos V Grimbizis G Van Belle Y Hood K et al. Face and content validity of the virtual reality simulator ‘ScanTrainer®'. Gynecol Surg. (2017) 14:18. 10.1186/s10397-017-1020-628959176
Sacco Botto F Ingrassia PL Donato P Garzaro M Aluffi P Gentilli S et al. Manufacture of a multi-purpose low-cost animal bench-model for teaching tracheostomy. JoVE (J Vis Exp). (2019) 147:e59396. 10.3791/5939631157774
Cho J Kang GH Kim EC Oh YM Choi HJ Im TH et al. Comparison of manikin versus porcine models in cricothyrotomy procedure training. Emerg Med J EMJ. (2008) 25:732–4. 10.1136/emj.2008.05901418955605
Iverson K Riojas R Sharon D Hall AB. Objective comparison of animal training versus artificial simulation for initial cricothyroidotomy training. Am Surg. (2015) 81:515–8. 10.1177/00031348150810053525975338
Pandian V Leeper WR Jones C Pugh K Yenokyan G Bowyer M et al. Comparison of surgical cricothyroidotomy training: a randomized controlled trial of a swine model versus an animated robotic manikin model. Trauma Surg Acute Care Open. (2020) 5:e000431. 10.1136/tsaco-2019-00043132399492
Crosetti E Fantini M Lancini D Manca A Succo G. Learning modern laryngeal surgery in a dissection laboratory. JoVE (J Vis Exp). (2020) 157:e60407. 10.3791/6040732250354