[en] AIMS: Diets and parasites influence the gut bacterial symbionts of bumble bees, but potential interactive effects remain overlooked. The main objective of this study was to assess the isolated and interactive effects of sunflower pollen, its phenolamides, and the widespread trypanosomatid Crithidia sp. on the gut bacterial symbionts of Bombus terrestris males.
METHODS AND RESULTS: Bumble bee males emerged in microcolonies fed on either (i) willow pollen (control), (ii) sunflower pollen, or (iii) willow pollen spiked with phenolamide extracts from sunflower pollen. These microcolonies were infected by Crithidia sp. or were pathogen-free. Using 16S rRNA amplicon sequencing (V3-V4 region), we observed a significant alteration of the beta diversity but not of the alpha diversity in the gut microbial communities of males fed on sunflower pollen compared to males fed on control pollen. Similarly, infection by the gut parasite Crithidia sp. altered the beta diversity but not the alpha diversity in the gut microbial communities of males, irrespective of the diet. By contrast, we did not observe any significant alteration of the beta or alpha diversity in the gut microbial communities of males fed on phenolamide-enriched pollen compared to males fed on control pollen. Changes in the beta diversity indicate significant dissimilarities of the bacterial taxa between the treatment groups, while the lack of difference in alpha diversity demonstrates no significant changes within each treatment group.
CONCLUSIONS: Bumble bees harbour consistent gut microbiota worldwide, but our results suggest that the gut bacterial communities of bumble bees are somewhat shaped by their diets and gut parasites as well as by the interaction of these two factors. This study confirms that bumble bees are suitable biological surrogates to assess the effect of diet and parasite infections on gut microbial communities.
Disciplines :
Microbiology
Author, co-author :
GEKIERE, Antoine ; Université de Mons - UMONS > Faculté des Science > Service de Zoologie
Vanderplanck, Maryse ; Université de Mons - UMONS > Faculté des Science > Service de Zoologie ; CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France, 1919 Route de Mende, 34293 Montpellier, France
Hettiarachchi, Amanda; Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, 35 K.L. Ledeganckstraat, 9000 Ghent, Belgium
Semay, Irène ; Université de Mons - UMONS > Faculté des Science > Service de Synthèse et spectrométrie de masse organiques
Gerbaux, Pascal ; Université de Mons - UMONS > Faculté des Science > Service de Synthèse et spectrométrie de masse organiques
Michez, Denis ; Université de Mons - UMONS > Faculté des Science > Service de Zoologie
Joossens, Marie; Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, 35 K.L. Ledeganckstraat, 9000 Ghent, Belgium
Vandamme, Peter; Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, 35 K.L. Ledeganckstraat, 9000 Ghent, Belgium
Language :
English
Title :
A case study of the diet-microbiota-parasite interplay in bumble bees
Fonds De La Recherche Scientifique - FNRS Research Foundation Flanders
Funding text :
This work was a part of the ARC ‘Actions de Recherche Concertées’ project ‘METAFLORE, 2019–2023’. This work was also partly supported by the ‘Fonds de la Recherche Scientifique—FNRS’ and the Research Foundation-Flanders (FWO) under EOS Project CLIPS (n°3 094785). A.G. is supported by a F.R.S.-FNRS PhD grant ‘Aspirant’. The PhD grant of I.S. was supported by the ARC project METAFLORE.
Aizen MA, Aguiar S, Biesmeijer JC et al. Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. Global Change Biol 2019;25:3516–27. https://doi.org/10.1111/gcb.14736.
Ambika Manirajan B, Ratering S, Rusch V et al. Bacterial microbiota associated with flower pollen is influenced by pollination type, and shows a high degree of diversity and species-specificity. EnvironMicrobiol2016;18:5161–74.https://doi.org/10.1111/1462-292 0.13524.
Amiri N, M. Keady M, Lim HC. Honey bees and bumble bees occupying the same landscape have distinct gut microbiomes and amplicon sequence variant-level responses to infections. PeerJ 2023;11:e15501. https://doi.org/10.7717/peerj.15501.
Anderson KE, Ricigliano VA. Honey bee gut dysbiosis: a novel context of disease ecology. Curr Opin Insect Sci 2017;22:125–32. https://doi.org/10.1016/j.cois.2017.05.020.
Bakker JD. 2022. Applied Multivariate Statistics in R. Washington, DC: University of Washington. Retrieved from https://uw.pressbooks.pub/appliedmultivariatestatistics/ (12 October 2023, date last accessed).
Barribeau SM, Schmid-Hempel P, Walser J et al. Genetic variation and microbiota in bumble bees cross-infected by different strains of C. bombi. PLoS One 2022;17:e0277041. https://doi.org/10.1371/journal.pone.0277041.
Billiet A, Meeus I, Cnockaert M et al. Effect of oral administration of lactic acid bacteria on colony performance and gut microbiota in indoor-reared bumblebees (Bombus terrestris). Apidologie 2017;48:41–50. https://doi.org/10.1007/s13592-016-0447-5.
Billiet A, Meeus I, Van Nieuwerburgh F et al. Impact of sugar syrup and pollen diet on the bacterial diversity in the gut of indoor-reared bumblebees (Bombus terrestris). Apidologie 2015;47:548–60. https://doi.org/10.1007/s13592-015-0399-1.
Blighe K, Rana S, Lewis M. 2021. EnhancedVolcano: publication-ready volcano plots with enhanced colouring and labeling.
Bonilla-Rosso G, Engel P. Functional roles and metabolic niches in the honey bee gut microbiota. Curr Opin Microbiol 2018;43:69–76. ht tps://doi.org/10.1016/j.mib.2017.12.009.
Cai S-B, Wu G, Dong Z-X et al. Colonization dynamics of the gut flora in western honey bee workers within 7-day post-emergence. Apidologie2022;53:44.https://doi.org/10.1007/s13592-022-00934 -5.
Callahan B. 2020a. DADA2 Pipeline Tutorial (1.16). Retrieved November 4, 2020, from https://benjjneb.github.io/dada2/tutorial.html (12 October 2023, date last accessed).
Callahan B. 2020b. RDP taxonomic training data formatted for DADA2 (RDP trainset 18/release 11.5) [Data set]. Zenodo https://doi.org/10.5281/zenodo.4310151 (12 October 2023, date last accessed).
Callahan BJ, McMurdie PJ, Rosen MJ et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 2016;13:581–3. https://doi.org/10.1038/nmeth.3869
Cariveau DP, Powell JE, Koch H et al. Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus). ISME J 2014;8:2369–79. https://doi.org/10.1038/ismej.2014.68
Castelli L, Balbuena S, Branchiccela B et al. Impact of chronic exposure to sublethal doses of glyphosate on honey bee immunity, gut microbiota and infection by pathogens. Microorganisms 2021;9:845. https://doi.org/10.3390/microorganisms9040845
Castelli L, Branchiccela B, Garrido M et al. Impact of nutritional stress on honeybee gut microbiota, immunity, and Nosema ceranae infection. Microb Ecol 2020;80:908–19. https://doi.org/10.1007/s00248 -020-01538-1
Chahine S, O’Donnell MJ. Interactions between detoxification mechanisms and excretion in Malpighian tubules of Drosophila melanogaster. J Exp Biol 2011;214:462–8. https://doi.org/10.1242/jeb.048884
Choi H, Roy N, Kim J-M et al. Dynamics of gut microbiome upon pollination in bumblebee (Bombus terrestris). J Asia Pac Entomol 2023;26:102042. https://doi.org/10.1016/j.aspen.2023.102042
Cohen H, Smith GP, Sardiñas H et al. Mass-flowering monoculture attracts bees, amplifying parasite prevalence. Proc R Soc B 2021;288:20211369. https://doi.org/10.1098/rspb.2021.1369
Dharampal PS, Diaz-Garcia L, Haase MAB et al. Microbial diversity associated with the pollen stores of captive-bred bumble bee colonies. Insects 2020;11:250. https://doi.org/10.3390/insects11040250
Douglas AE. Simple animal models for microbiome research. Nat Rev Micro 2019;17:764–75. https://doi.org/10.1038/s41579-019-0 242-1
Erler S, Lewkowski O, Poehlein A et al. The curious case of Achromobacter eurydice, a Gram-variable pleomorphic bacterium associated with European foulbrood disease in honeybees. Microb Ecol 2018;75:1–6. https://doi.org/10.1007/s00248-017-1007-x
Fatrcová-Šramková K, Nôžková J, Máriássyová M et al. Biologically active antimicrobial and antioxidant substances in the Helianthus annuus L. bee pollen. J Environ Sci Health B 2016;51:176–81. https://doi.org/10.1080/03601234.2015.1108811
Felden A, Baty JW, Lester PJ. Gut microbial communities and pathogens infection in New Zealand bumble bees (Bombus terrestris, Linnaeus, 1758). N Z Entomol 2021;44:71–80. https://doi.org/10.1080/00779962.2022.2053350
Fernandez De Landa G, Alberoni D, Baffoni L et al. The gut microbiome of solitary bees is mainly affected by pathogen assemblage and partially by land use. Environ Microbiome 2023;18:38. https://doi.org/10.1186/s40793-023-00494-w
Figueroa LL, Fowler A, Lopez S et al. Sunflower spines and beyond: mechanisms and breadth of pollen that reduce gut pathogen infection in the common eastern bumble bee. Funct Ecol 2023;37:1757–69. https://doi.org/10.1111/1365-2435.14320
Fowler AE, Giacomini JJ, Connon SJ et al. Sunflower pollen reduces a gut pathogen in the model bee species, Bombus impatiens, but has weaker effects in three wild congeners. Proc Biol Sci 2022;289: 20211909. https://doi.org/10.1098/rspb.2021.1909
Gekière A, Semay I, Gérard M et al. Poison or potion: effects of sunflower phenolamides on bumble bees and their gut parasite. Biology 2022;11:545. https://doi.org/10.3390/biology11040545
Geldert C, Abdo Z, Stewart JE et al. Dietary supplementation with phytochemicals improves diversity and abundance of honey bee gut microbiota. J Appl Microbiol 2020;130: 1705–20. https://doi.org/10.1111/jam.14897
Giacomini JJ, Leslie J, Tarpy DR et al. Medicinal value of sunflower pollen against bee pathogens. Sci Rep 2018;8:14394. https://doi.org/10.1038/s41598-018-32681-y
Gilbert SF, Sapp J, Tauber AI. A symbiotic view of life: we have never been individuals. Q Rev Biol 2012;87:325–41. https://doi.org/10.1086/668166
Graystock P, Rehan SM, McFrederick QS. Hunting for healthy microbiomes: determining the core microbiomes of Ceratina, Megalopta, and Apis bees and how they associate with microbes in bee collected pollen. Conserv Genet 2017;18:701–11. https://doi.org/10.1007/s1 0592-017-0937-7
Hammer TJ, Le E, Martin AN et al. The gut microbiota of bumblebees. Insect Soc 2021;68:287–301. https://doi.org/10.1007/s00040 -021-00837-1
Hristov P, Neov B, Shumkova R et al. Significance of Apoidea as main pollinators. Ecological and economic impact and implications for human nutrition. Diversity 2020;12:280. https://doi.org/10.3390/ d12070280
Jost L. Entropy and diversity. Oikos 2006;113:363–75. https://doi.org/ 10.1111/j.2006.0030-1299.14714.x
Kapheim KM, Rao VD, Yeoman CJ et al. Caste-specific differences in hindgut microbial communities of honey bees (Apis mellifera). PLoS One 2015;10:e0123911. https://doi.org/10.1371/journal.pone.012 3911
Kay M, Elkin L, Higgins J et al. 2021. ARTool: aligned rank transform for nonparametric factorial ANOVAs. R package version 0.11.1. https://github.com/mjskay/ARTool, https://doi.org/10.5281/zenodo.594511, (12 October 2023, date last accessed).
Kešnerová L, Mars RAT, Ellegaard KM et al. Disentangling metabolic functions of bacteria in the honey bee gut. PLoS Biol 2017;15:1–28. https://doi.org/10.1371/journal.pbio.2003467
Klinger EG, Camp AA, Strange JP et al. Bombus (Hymenoptera: Apidae) microcolonies as a tool for biological understanding and pesticide risk assessment. Environ Entomol 2019;48:1249–59. https://doi.org/10.1093/ee/nvz117
Koch H, Cisarovsky G, Schmid-Hempel P. Ecological effects on gut bacterial communities in wild bumblebee colonies. J Anim Ecol 2012;81:1202–10. https://doi.org/10.1111/j.1365-2656.2012.02004.x
Koch H, Schmid-Hempel P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc Natl Acad Sci U S A 2011;108:19288–92. https://doi.org/10.1073/pnas.1110474 108
Koch H, Schmid-Hempel P. Gut microbiota instead of host genotype drive the specificity in the interaction of a natural host-parasite system.EcolLett2012;15:1095–103.https://doi.org/10.1111/j.1461-0248.2012.01831.x
Koch H, Welcome V, Kendal-Smith A et al. Host and gut microbiome modulate the antiparasitic activity of nectar metabolites in a bumblebee pollinator. Philos Trans R Soc Lond B Biol Sci 2022;377:20210162. https://doi.org/10.1098/rstb.2021.0162
Koh I, Lonsdorf EV, Williams NM et al. Modeling the status, trends, and impacts of wild bee abundance in the United States. Proc Natl Acad Sci U S A 2016;113:140–5. https://doi.org/10.1073/pnas.151 7685113
Krams R, Gudra D, Popovs S et al. Dominance of fructose-associated Fructobacillus in the gut microbiome of bumblebees (Bombus terrestris) inhabiting natural forest meadows. Insects 2022;13:98. http s://doi.org/10.3390/insects13010098
Kwong WK, Medina LA, Koch H et al. Dynamic microbiome evolution in social bees. Sci Adv 2017;3:1–17. https://doi.org/10.1126/sciadv.1600513
Kwong WK, Moran NA. Gut microbial communities of social bees. Nat Rev Micro 2016;14:374–84. https://doi.org/10.1038/nrmicro.2016.43
Kyselka J, Bleha R, Dragoun M et al. Antifungal polyamides of hydroxycinnamic acids from sunflower bee pollen. J Agric Food Chem 2018;66:11018–26. https://doi.org/10.1021/acs.jafc.8 b03976
Lenth RV. 2022. emmeans: estimated marginal means, aka least-squares means. R package version 1.8.6. https://CRAN.R-project.org/package=emmeans (12 October 2023, date last accessed).
Levy M, Kolodziejczyk AA, Thaiss CA et al. Dysbiosis and the immune system. Nat Rev Immunol 2017;17:219–32. https://doi.org/10.1038/nri.2017.7
Li K, Wang L, Zhang Z et al. Dynamic change of gut microbiota in the male bee of Bombus terrestris (Hymenoptera: Apidae). J Agric Sci 2021;13:163. https://doi.org/10.5539/jas.v13n9p163
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8.
Maebe K, Vereecken NJ, Piot N et al. The holobiont as a key to the adaptation and conservation of wild bees in the Anthropocene. Front Ecol Evol 2021;9:1–5. https://doi.org/10.3389/fevo.2021.78 1470
Maeno S, Tanizawa Y, Kanesaki Y et al. Genomic characterization of a fructophilic bee symbiont Lactobacillus kunkeei reveals its niche-specific adaptation. Syst Appl Microbiol 2016;39:516–26. https://doi.org/10.1016/j.syapm.2016.09.006
Maes PW, Rodrigues PAP, Oliver R et al. Diet-related gut bacterial dysbiosis correlates with impaired development, increased mortality and Nosema disease in the honeybee (Apis mellifera). Mol Ecol 2016;25:5439–50. https://doi.org/10.1111/mec.13862
Martin CD, Fountain MT, Brown MJF. The potential for parasite spill-back from commercial bumblebee colonies: a neglected threat to wild bees? J Insect Conserv 2021;25:531–9. https://doi.org/10.1007/s10841-021-00322-x
Martinez Arbizu P. 2020. pairwiseAdonis: pairwise multilevel comparison using adonis. R package version 0.4. https://github.com/pmartinezarbizu/pairwiseAdonis (12 October 2023, date last accessed).
Mathiasson ME, Rehan SM. Status changes in the wild bees of northeastern North America over 125 years revealed through museum specimens. Insect Conserv Diversity 2019;12:278–88. https://doi.org/10.1111/icad.12347
McLaren MR. 2020. Silva SSU taxonomic training data formatted for DADA2 (Silva version 138) (Version 2) [DaCset]. Zenodo https://doi.org/10.5281/zenodo.3986799 (12 October 2023, date last accessed).
McMurdie PJ, Holmes SP. PLoS ONE phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013; 8:e61217.
Meeus I, Parmentier L, Billiet A et al. 16S rRNA amplicon sequencing demonstrates that indoor-reared bumblebees (Bombus terrestris) harbor a core subset of bacteria normally associated with the wild host. PLoS One 2015;10:1–15. https://doi.org/10.1371/journal.pone.0125152
Meeus I, Pisman M, Smagghe G et al. Interaction effects of different drivers of wild bee decline and their influence on host–pathogen dynamics. Curr Opin Insect Sci 2018;26:136–41. https://doi.org/10.1016/j.cois.2018.02.007
Mockler BK, Kwong WK, Moran NA et al. Microbiome structure influences infection by the parasite Crithidia bombi in bumble bees. Appl Environ Microb 2018;84:1–11. https://doi.org/10.1128/AEM.0233 5-17
Näpflin K, Schmid-Hempel P. Immune response and gut microbial community structure in bumblebees after microbiota transplants. Proc Biol Sci 2016;283:20160312. https://doi.org/10.1098/rspb.2016.03 12
Näpflin K, Schmid-Hempel P. High gut microbiota diversity provides lower resistance against infection by an intestinal parasite in bumblebees. Am Nat 2018;192:131–41. https://doi.org/10.1086/6980 13
Nguyen PN, Rehan SM. Developmental microbiome of the small carpenter bee, Ceratina calcarata. Environ DNA 2022;4:808–19. https://doi.org/10.1002/edn3.291
Oksanen J, Blanchet FG, Friendly M et al. 2019. vegan: Community ecology package. R package version 2.6-4. https://CRAN.R-project.org/package=vegan (12 October 2023, date last accessed).
Osterman J, Aizen MA, Biesmeijer JC et al. Global trends in the number and diversity of managed pollinator species. Agric Ecosyst Environ 2021;322:107653. https://doi.org/10.1016/j.agee.2021.107653
Palmer-Young EC, Ngor L, Burciaga Nevarez R et al. Temperature dependence of parasitic infection and gut bacterial communities in bumble bees. Environ Microbiol 2019;21:4706–23. https://doi.org/ 10.1111/1462-2920.14805
Parmentier A, Meeus I, Van Nieuwerburgh F et al. A different gut microbial community between larvae and adults of a wild bumblebee nest (Bombus pascuorum). Insect Sci 2018;25:66–74. https://doi.org/10.1111/1744-7917.12381
Parmentier L, Meeus I, Mosallanejad H et al. Plasticity in the gut microbial community and uptake of Enterobacteriaceae (Gammaproteobacteria) in Bombus terrestris bumblebees’ nests when reared indoors and moved to an outdoor environment. Apidologie 2016;47:237–50. https://doi.org/10.1007/s13592-015-0393-7
Parreño MA, Alaux C, Brunet J-L et al. Critical links between biodiversity and health in wild bee conservation. Trends Ecol Evol 2022;37:309–21. https://doi.org/10.1016/j.tree.2021.11.013
Pereira K, de S, Parmentier L et al. Managed bumble bees acquire parasites from their foraging environment: a case study on parasite spill-back. J Invertebr Pathol 2021;182:107583. https://doi.org/10.1016/ j.jip.2021.107583
Praet J, Parmentier A, Schmid-Hempel R et al. Large-scale cultivation of the bumblebee gut microbiota reveals an underestimated bacterial species diversity capable of pathogen inhibition. Environ Microbiol 2018;20:214–27. https://doi.org/10.1111/1462-2920.13973
R Core Team. 2020. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
Radev Z. Sugars composition of bee-collected pollen. C R De Acad Bulg Sci 2022;74:1599–605. https://doi.org/10.7546/CRABS.2021.11.03
Raymann K, Coon KL, Shaffer Z et al. Pathogenicity of Serratia marcescens strains in honey bees. mBio 2018;9. e01649–18. https://doi.org/10.1128/mBio.01649-18
Ricigliano VA, Williams ST, Oliver R. Effects of different artificial diets on commercial honey bee colony performance, health biomarkers, and gut microbiota. BMC Vet Res 2022;18:52. https://doi.org/10.1186/s12917-022-03151-5
Rosenberg E, Zilber-Rosenberg I. Microbes drive evolution of animals and plants: the hologenome concept. mBio 2016;7:1–8. https://doi.org/10.1128/mBio.01395-15.Editor
Rothman JA, Leger L, Graystock P et al. The bumble bee microbiome increases survival of bees exposed to selenate toxicity. Environ Microbiol 2019;21:3417–29. https://doi.org/10.1111/1462-2920. 14641
Roumani M, Besseau S, Gagneul D et al. Phenolamides in plants: an update on their function, regulation, and origin of their biosynthetic enzymes. J Exp Bot 2021;72:2334–55. https://doi.org/10.1093/jxb/ eraa582
Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016;14:e1002533. https://doi.org/10.1371/journal.pbio.1002533
Snauwaert I, Roels SP, Van Nieuwerburg F et al. Microbial diversity and metabolite composition of Belgian red-brown acidic ales. Int J Food Microbiol 2016;221:1–11. https://doi.org/10.1016/j.ijfoodmicro.2015.12.009
Steffan SA, Dharampal PS, Danforth BN et al. Omnivory in bees: elevated trophic positions among all major bee families. Am Nat 2019;194:414–21. https://doi.org/10.1086/704281
Straw EA, Mesnage R, Brown MJF et al. No impacts of glyphosate or Crithidia bombi, or their combination, on the bumblebee microbiome. Sci Rep 2023;13:8949. https://doi.org/10.1038/s41598-023 -35304-3
Taha E-KA. Chemical composition and amounts of mineral elements in honeybee-collected pollen in relation to botanical origin. J Apic Sci 2015;59:75–81. https://doi.org/10.1515/jas-2015-0008
Tripodi AD, Szalanski AL, Strange JP. Novel multiplex PCR reveals multiple trypanosomatid species infecting North American bumble bees (Hymenoptera: Apidae: Bombus). J Invertebr Pathol 2018;153:147–55. https://doi.org/10.1016/j.jip.2018.03.009
Tuerlings T, Hettiarachchi A, Joossens M et al. Microbiota and pathogens in an invasive bee: Megachile sculpturalis from native and invaded regions. Insect Mol Biol 2023;32:1–14. https://doi.org/10.1 111/imb.12849
Vaudo AD, Tooker JF, Patch HM et al. Pollen protein: lipid macronutrient ratios may guide broad patterns of bee species floral preferences. Insects 2020;11:132. https://doi.org/10.3390/insects11020132
Wäckers FL, Alberola JS, Garcia-Marí F et al. Attract and distract: manipulation of a food-mediated protective mutualism enhances natural pest control. Agric Ecosyst Environ 2017;246:168–74. https://doi.org/10.1016/j.agee.2017.05.037
Wang X, Zhong Z, Chen X et al. High-fat diets with differential fatty acids induce obesity and perturb gut microbiota in honey bee. Int J Mol Sci 2021;22:1–15. https://doi.org/10.3390/ijms22020834
Wobbrock JO, Findlater L, Gergle D et al. 2011. The aligned rank transform for nonparametric factorial analyses using only anova procedures. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 143–6. New York: ACM. https://doi.org/10.1145/1978942.1978963
Wright ES. Using DECIPHER v2.0 to analyze big biological sequence data in R. R J 2016;8:352–9. https://doi.org/10.32614/RJ-2016-0 25.
Yang X, Xie L, Li Y et al. More than 9,000,000 unique genes in human gut bacterial community: estimating gene numbers inside a human body. PLoS One 2009;4:e6074. https://doi.org/10.1371/journal.pone.0006074
Zhang Y, Su M, Wang L et al. Vairimorpha (Nosema) ceranae infection alters honey bee microbiota composition and sustains the survival of adult honey bees. Biology 2021;10:905. https://doi.org/10.3390/ biology10090905
Zhang Z, Guo Y, Zhuang M et al. Potential role of the gut microbiota of bumblebee Bombus pyrosoma in adaptation to high-altitude habitats. Front Microbiol 2023;14:1218560. https://doi.org/10.3389/fmicb.2023.1218560
Zheng H, Steele MI, Leonard SP et al. Honey bees as models for gut microbiota research. Lab Anim 2018;47:317–25. https://doi.org/10.1038/s41684-018-0173-x
Zheng J, Wittouck S, Salvetti E et al. A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 2020;70:2782–858. https://doi.org/10.1099/ijsem.0.004107
Zilber-Rosenberg I, Rosenberg E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 2008;32:723–35. https://doi.org/10.1111/j.15 74-6976.2008.00123.x?PMU?