[en] Polyhydroxyurethanes (PHU), obtained from CO2-based cyclic carbonates (CC) and polyamines, are known as greener and safer alternatives to conventional polyurethanes. Interestingly, the hydroxyurethane moieties present along the PHU’s backbone offer unexplored opportunities in terms of enhanced adhesion and mechanical properties that could be a major breakthrough in many structural applications. Furthermore, PHUs have shown thermomechanical recyclability arising from the ability of hydroxyurethane moieties to participate in reversible exchange reactions. However, the relationship between the macromolecular structure, the processability, and the final properties of these materials have not been evaluated to a sufficient extent to establish a comprehensive overview of these emerging thermosets. In this sense, this work aims to address this research gap by investigating the rheological and thermomechanical performances of PHU thermosets and opening an unexplored door for future sustainable engineered structural applications. A special emphasis was put on PHU thermosets formulated using potentially biobased monomers. The rheological behavior during cross-linking of the PHU formulations was studied and highlighted the importance of the number of CC functionalities in the viscosity and gel time, ranging from 10 min to nearly 3 h. Moduli superior to 2 GPa and glass transition over 50 °C were obtained for short multifunctional CC. Finally, the dynamic network behavior of these PHUs was also demonstrated through stress-relaxation and reprocessing. High temperatures (over 150 °C) and pressure lead to a good recovery of the thermomechanical properties. Such materials appear to be an interesting platform for structural applications, particularly fiber-reinforced polymers, that can overcome many sustainability challenges.
Research center :
CIRMAP - Centre d'Innovation et de Recherche en Matériaux Polymères
Disciplines :
Chemistry
Author, co-author :
Seychal, Guillem ; Université de Mons - UMONS > Faculté des Science > Service des Matériaux Polymères et Composites ; POLYMAT and Department of Advanced Polymers and Materials: Physics, Chemistry, and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, Spain
Ocando, Connie ; Laboratory of Polymeric and Composite Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Mons, Belgium
Bonnaud, Leila ; Université de Mons - UMONS > Unités externe > Materia Nova ASBL ; Materia Nova asbl, Parc Initialis, Mons, Belgium
De winter, Julien ; Université de Mons - UMONS > Faculté des Science > Service de Synthèse et spectrométrie de masse organiques
Grignard, Bruno ; Department of Chemistry, Center for Education and Research on Macromolecules (CERM), University of Liége, Sart-Tilman, Liége, Belgium
Detrembleur, Christophe; Department of Chemistry, Center for Education and Research on Macromolecules (CERM), University of Liége, Sart-Tilman, Liége, Belgium
Sardon, Haritz ; POLYMAT and Department of Advanced Polymers and Materials: Physics, Chemistry, and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, Spain
Aramburu, Nora; POLYMAT and Department of Advanced Polymers and Materials: Physics, Chemistry, and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, Spain
Raquez, Jean-Marie ; Université de Mons - UMONS > Faculté des Science > Service des Matériaux Polymères et Composites
Language :
English
Title :
Emerging Polyhydroxyurethanes as Sustainable Thermosets: A Structure-Property Relationship
Research Institute for Materials Science and Engineering
Funders :
H2020 Marie Sklodowska-Curie Actions
Funding text :
The authors would like to express thanks for the financial support provided by the NIPU-EJD project; this project has received funding from the European Union’s Horizon 2020 research and innovation program under Marie Skłodowska-Curie Grant Agreement No. 955700. The authors are also grateful to the Materia Nova technological platform (Mons, Belgium) for the support in rheology and characterization. Christophe Detrembleur is the F.R.S.-FNRS Research Director.
JEC Observer: Current trends in the global composites industry 2021-2026; JEC Group: 2022.
Raquez, J.-M.; Deléglise, M.; Lacrampe, M.-F.; Krawczak, P. Thermosetting (bio)materials derived from renewable resources: A critical review. Prog. Polym. Sci. 2010, 35, 487- 509, 10.1016/j.progpolymsci.2010.01.001
Andrew, J. J.; Dhakal, H. ustainable biobased composites for advanced applications: recent trends and future opportunities - A critical review. Composites Part C: Open Access 2022, 7, 100220, 10.1016/j.jcomc.2021.100220
Maisonneuve, L.; Lamarzelle, O.; Rix, E.; Grau, E.; Cramail, H. Isocyanate-Free Routes to Polyurethanes and Poly(hydroxy Urethane)s. Chem. Rev. 2015, 115, 12407- 12439, 10.1021/acs.chemrev.5b00355
Cornille, A.; Michaud, G.; Simon, F.; Fouquay, S.; Auvergne, R.; Boutevin, B.; Caillol, S. Promising mechanical and adhesive properties of isocyanate-free poly(hydroxyurethane). Eur. Polym. J. 2016, 84, 404- 420, 10.1016/j.eurpolymj.2016.09.048
Panchireddy, S.; Grignard, B.; Thomassin, J.-M.; Jerome, C.; Detrembleur, C. Bio-based poly(hydroxyurethane) glues for metal substrates. Polym. Chem. 2018, 9, 2650- 2659, 10.1039/C8PY00281A
Blattmann, H.; Mülhaupt, R. Multifunctional -amino alcohols as bio-based amine curing agents for the isocyanate- and phosgene-free synthesis of 100% bio-based polyhydroxyurethane thermosets. Green Chem. 2016, 18, 2406- 2415, 10.1039/C5GC02563J
Fleischer, M.; Blattmann, H.; Mülhaupt, R. Glycerol-, pentaerythritol- and trimethylolpropane-based polyurethanes and their cellulose carbonate composites prepared via the non-isocyanate route with catalytic carbon dioxide fixation. Green Chem. 2013, 15, 934, 10.1039/c3gc00078h
Blain, M.; Jean-Gérard, L.; Auvergne, R.; Benazet, D.; Caillol, S.; Andrioletti, B. Rational investigations in the ring opening of cyclic carbonates by amines. Green Chem. 2014, 16, 4286- 4291, 10.1039/C4GC01032A
Ecochard, Y.; Caillol, S. Hybrid polyhydroxyurethanes: How to overcome limitations and reach cutting edge properties?. Eur. Polym. J. 2020, 137, 109915, 10.1016/j.eurpolymj.2020.109915
Bakkali-Hassani, C.; Berne, D.; Ladmiral, V.; Caillol, S. Transcarbamoylation in Polyurethanes: Underestimated Exchange Reactions. Macromolecules 2022, 55, 7974- 7991, 10.1021/acs.macromol.2c01184
Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-Like Malleable Materials from Permanent Organic Networks. Science 2011, 334, 965- 968, 10.1126/science.1212648
Fortman, D. J.; Brutman, J. P.; De Hoe, G. X.; Snyder, R. L.; Dichtel, W. R.; Hillmyer, M. A. Approaches to Sustainable and Continually Recyclable Cross-Linked Polymers. ACS Sustainable Chem. Eng. 2018, 6, 11145- 11159, 10.1021/acssuschemeng.8b02355
Monie, F.; Grignard, B.; Detrembleur, C. Divergent Aminolysis Approach for Constructing Recyclable Self-Blown Nonisocyanate Polyurethane Foams. ACS Macro Lett. 2022, 11, 236- 242, 10.1021/acsmacrolett.1c00793
Bourguignon, M.; Grignard, B.; Detrembleur, C. Water-Induced Self-Blown Non-Isocyanate Polyurethane Foams. Angew. Chem., Int. Ed. 2022, 61, e202213422, 10.1002/anie.202213422
Fortman, D. J.; Brutman, J. P.; Hillmyer, M. A.; Dichtel, W. R. Structural effects on the reprocessability and stress relaxation of crosslinked polyhydroxyurethanes. J. Appl. Polym. Sci. 2017, 134, 44984, 10.1002/app.44984
Chen, X.; Li, L.; Jin, K.; Torkelson, J. M. Reprocessable polyhydroxyurethane networks exhibiting full property recovery and concurrent associative and dissociative dynamic chemistry via transcarbamoylation and reversible cyclic carbonate aminolysis. Polym. Chem. 2017, 8, 6349- 6355, 10.1039/C7PY01160A
Hu, S.; Chen, X.; Torkelson, J. M. Biobased Reprocessable Polyhydroxyurethane Networks: Full Recovery of Crosslink Density with Three Concurrent Dynamic Chemistries. ACS Sustainable Chem. Eng. 2019, 7, 10025- 10034, 10.1021/acssuschemeng.9b01239
Liu, X.; Yang, X.; Wang, S.; Wang, S.; Wang, Z.; Liu, S.; Xu, X.; Liu, H.; Song, Z. Fully Bio-Based Polyhydroxyurethanes with a Dynamic Network from a Terpene Derivative and Cyclic Carbonate Functional Soybean Oil. ACS Sustainable Chem. Eng. 2021, 9, 4175- 4184, 10.1021/acssuschemeng.1c00033
Zheng, J.; Png, Z. M.; Ng, S. H.; Tham, G. X.; Ye, E.; Goh, S. S.; Loh, X. J.; Li, Z. Vitrimers: Current research trends and their emerging applications. Mater. Today 2021, 51, 586- 625, 10.1016/j.mattod.2021.07.003
Krishnakumar, B.; Sanka, R. P.; Binder, W. H.; Parthasarthy, V.; Rana, S.; Karak, N. Vitrimers: Associative dynamic covalent adaptive networks in thermoset polymers. Chem. Eng. J. 2020, 385, 123820, 10.1016/j.cej.2019.123820
Panchireddy, S.; Thomassin, J.-M.; Grignard, B.; Damblon, C.; Tatton, A.; Jerome, C.; Detrembleur, C. Reinforced poly(hydroxyurethane) thermosets as high performance adhesives for aluminum substrates. Polym. Chem. 2017, 8, 5897- 5909, 10.1039/C7PY01209H
Quienne, B.; Poli, R.; Pinaud, J.; Caillol, S. Enhanced aminolysis of cyclic carbonates by -hydroxylamines for the production of fully biobased polyhydroxyurethanes. Green Chem. 2021, 23, 1678- 1690, 10.1039/D0GC04120C
Advani, S. G.; Hsiao, K. T. In Manufacturing Techniques for Polymer Matrix Composites (PMCs); Advani, S. G., Hsiao, K.-T., Eds.; Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: 2012; pp 1- 12.
Woelk, H. U. Stärke als Chemierohstoff - Möglichkeiten und Grenzen. Starch - Stärke 1981, 33, 397- 408, 10.1002/star.19810331202
Quintela, A. L.; Pellin, M. P.; Abuin, S. P. Epoxidation reaction of trimethylolpropane with epichlorohydrin: Kinetic study of chlorohydrin formation. Polym. Eng. Sci. 1996, 36, 568- 573, 10.1002/pen.10443
Poussard, L.; Mariage, J.; Grignard, B.; Detrembleur, C.; Jérôme, C.; Calberg, C.; Heinrichs, B.; De Winter, J.; Gerbaux, P.; Raquez, J.-M.; Bonnaud, L.; Dubois, P. Non-Isocyanate Polyurethanes from Carbonated Soybean Oil Using Monomeric or Oligomeric Diamines To Achieve Thermosets or Thermoplastics. Macromolecules 2016, 49, 2162- 2171, 10.1021/acs.macromol.5b02467
Alves, M.; Grignard, B.; Mereau, R.; Jerome, C.; Tassaing, T.; Detrembleur, C. Organocatalyzed coupling of carbon dioxide with epoxides for the synthesis of cyclic carbonates: catalyst design and mechanistic studies. Catalysis Science & Technology 2017, 7, 2651- 2684, 10.1039/C7CY00438A
Scodeller, I.; Mansouri, S.; Morvan, D.; Muller, E.; deOliveira Vigier, K.; Wischert, R.; Jérôme, F. Synthesis of Renewable meta -Xylylenediamine from Biomass-Derived Furfural. Angew. Chem. 2018, 130, 10670- 10674, 10.1002/ange.201803828
Winter, J. D.; Deshayes, G.; Boon, F.; Coulembier, O.; Dubois, P.; Gerbaux, P. MALDI-ToF analysis of polythiophene: use of trans-2-[3-(4-t-butyl-phenyl)-2-methyl- 2-propenylidene]malononitrile-DCTB-as matrix. Journal of Mass Spectrometry 2011, 46, 237- 246, 10.1002/jms.1886
Denissen, W.; Winne, J. M.; Du Prez, F. E. Vitrimers: permanent organic networks with glass-like fluidity. Chemical Science 2016, 7, 30- 38, 10.1039/C5SC02223A
Brutman, J. P.; Delgado, P. A.; Hillmyer, M. A. Polylactide Vitrimers. ACS Macro Lett. 2014, 3, 607- 610, 10.1021/mz500269w
D20 Committee, Standard Test Method for Tensile Properties of Plastics; ASTM International: 2022; ASTM D638-22.
Camara, F.; Benyahya, S.; Besse, V.; Boutevin, G.; Auvergne, R.; Boutevin, B.; Caillol, S. Reactivity of secondary amines for the synthesis of non-isocyanate polyurethanes. Eur. Polym. J. 2014, 55, 17- 26, 10.1016/j.eurpolymj.2014.03.011
Besse, V.; Camara, F.; Méchin, F.; Fleury, E.; Caillol, S.; Pascault, J.-P.; Boutevin, B. How to explain low molar masses in PolyHydroxyUrethanes (PHUs). Eur. Polym. J. 2015, 71, 1- 11, 10.1016/j.eurpolymj.2015.07.020
Schimpf, V.; Ritter, B. S.; Weis, P.; Parison, K.; Mülhaupt, R. High Purity Limonene Dicarbonate as Versatile Building Block for Sustainable Non-Isocyanate Polyhydroxyurethane Thermosets and Thermoplastics. Macromolecules 2017, 50, 944- 955, 10.1021/acs.macromol.6b02460
Penn, L. S.; Chiao, T. T. In Handbook of Composites; Lubin, G., Ed.; Springer: Boston, MA, 1982; pp 57- 88.
Schmidt, S.; Göppert, N. E.; Bruchmann, B.; Mülhaupt, R. Liquid sorbitol ether carbonate as intermediate for rigid and segmented non-isocyanate polyhydroxyurethane thermosets. Eur. Polym. J. 2017, 94, 136- 142, 10.1016/j.eurpolymj.2017.06.043
Carré, C.; Ecochard, Y.; Caillol, S.; Averous, L. From the synthesis of biobased cyclic carbonate to polyhydroxyurethanes: a promising route towards renewable NonIsocyanate Polyurethanes. ChemSusChem 2019, 12, 3410- 3430, 10.1002/cssc.201900737
Cornille, A.; Auvergne, R.; Figovsky, O.; Boutevin, B.; Caillol, S. A perspective approach to sustainable routes for non-isocyanate polyurethanes. Eur. Polym. J. 2017, 87, 535- 552, 10.1016/j.eurpolymj.2016.11.027
Ecochard, Y.; Leroux, J.; Boutevin, B.; Auvergne, R.; Caillol, S. From multi-functional siloxane-based cyclic carbonates to hybrid polyhydroxyurethane thermosets. Eur. Polym. J. 2019, 120, 109280, 10.1016/j.eurpolymj.2019.109280
Cornille, A.; Blain, M.; Auvergne, R.; Andrioletti, B.; Boutevin, B.; Caillol, S. A study of cyclic carbonate aminolysis at room temperature: effect of cyclic carbonate structures and solvents on polyhydroxyurethane synthesis. Polym. Chem. 2017, 8, 592- 604, 10.1039/C6PY01854H
Blain, M.; Cornille, A.; Boutevin, B.; Auvergne, R.; Benazet, D.; Andrioletti, B.; Caillol, S. Hydrogen bonds prevent obtaining high molar mass PHUs. J. Appl. Polym. Sci. 2017, 134, 44958, 10.1002/app.44958
Capar; Tabatabai, M.; Klee, J. E.; Worm, M.; Hartmann, L.; Ritter, H. Fast curing of polyhydroxyurethanes via ring opening polyaddition of low viscosity cyclic carbonates and amines. Polym. Chem. 2020, 11, 6964- 6970, 10.1039/D0PY01172J
Tomita, H.; Sanda, F.; Endo, T. Structural analysis of polyhydroxyurethane obtained by polyaddition of bifunctional five-membered cyclic carbonate and diamine based on the model reaction. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 851- 859, 10.1002/1099-0518(20010315)39:6<851::AID-POLA1058>3.0.CO;2-3
Blattmann, H.; Fleischer, M.; Bähr, M.; Mülhaupt, R. Isocyanate- and Phosgene-Free Routes to Polyfunctional Cyclic Carbonates and Green Polyurethanes by Fixation of Carbon Dioxide. Macromol. Rapid Commun. 2014, 35, 1238- 1254, 10.1002/marc.201400209
Bähr, M.; Mülhaupt, R. Linseed and soybean oil-based polyurethanes prepared via the non-isocyanate route and catalytic carbon dioxide conversion. Green Chem. 2012, 14, 483, 10.1039/c2gc16230j
Liu, T.; Zhou, T.; Yao, Y.; Zhang, F.; Liu, L.; Liu, Y.; Leng, J. Stimulus methods of multi-functional shape memory polymer nanocomposites: A review. Composites Part A: Applied Science and Manufacturing 2017, 100, 20- 30, 10.1016/j.compositesa.2017.04.022
Dicker, M. P.; Duckworth, P. F.; Baker, A. B.; Francois, G.; Hazzard, M. K.; Weaver, P. M. Green composites: A review of material attributes and complementary applications. Composites Part A: Applied Science and Manufacturing 2014, 56, 280- 289, 10.1016/j.compositesa.2013.10.014
Saba, N.; Jawaid, M.; Alothman, O. Y.; Paridah, M. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Construction and Building Materials 2016, 106, 149- 159, 10.1016/j.conbuildmat.2015.12.075
Leitsch, E. K.; Beniah, G.; Liu, K.; Lan, T.; Heath, W. H.; Scheidt, K. A.; Torkelson, J. M. Nonisocyanate Thermoplastic Polyhydroxyurethane Elastomers via Cyclic Carbonate Aminolysis: Critical Role of Hydroxyl Groups in Controlling Nanophase Separation. ACS Macro Lett. 2016, 5, 424- 429, 10.1021/acsmacrolett.6b00102
Lucherelli, M. A.; Duval, A.; Avérous, L. Biobased vitrimers: Towards sustainable and adaptable performing polymer materials. Prog. Polym. Sci. 2022, 127, 101515, 10.1016/j.progpolymsci.2022.101515
Chen, X.; Li, L.; Wei, T.; Venerus, D. C.; Torkelson, J. M. Reprocessable Polyhydroxyurethane Network Composites: Effect of Filler Surface Functionality on Cross-link Density Recovery and Stress Relaxation. ACS Appl. Mater. Interfaces 2019, 11, 2398- 2407, 10.1021/acsami.8b19100
Fortman, D. J.; Snyder, R. L.; Sheppard, D. T.; Dichtel, W. R. Rapidly Reprocessable Cross-Linked Polyhydroxyurethanes Based on Disulfide Exchange. ACS Macro Lett. 2018, 7, 1226- 1231, 10.1021/acsmacrolett.8b00667
Ruiz de Luzuriaga, A.; Martin, R.; Markaide, N.; Rekondo, A.; Cabañero, G.; Rodríguez, J.; Odriozola, I. Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. Materials Horizons 2016, 3, 241- 247, 10.1039/C6MH00029K
Brutman, J. P.; Fortman, D. J.; De Hoe, G. X.; Dichtel, W. R.; Hillmyer, M. A. Mechanistic Study of Stress Relaxation in Urethane-Containing Polymer Networks. J. Phys. Chem. B 2019, 123, 1432- 1441, 10.1021/acs.jpcb.8b11489
Zeng, Y.; Yang, B.; Luo, Z.; Pan, X.; Ning, Z. Fully rosin-based epoxy vitrimers with high mechanical and thermostability properties, thermo-healing and closed-loop recycling. Eur. Polym. J. 2022, 181, 111643, 10.1016/j.eurpolymj.2022.111643