Paper published on a website (Scientific congresses and symposiums)
The influence of Bivariate Empirical Mode Decomposition parameters on AI-based Automatic Modulation Recognition accuracy
Gros, Alexander; Moeyaert, Véronique; Mégret, Patrice
202343rd Symposium on Information Theory and Signal Processing in the Benelux (SITB 2023)
Peer reviewed
 

Files


Full Text
SITB_2023_Alexander_Gros.pdf
Author postprint (856.87 kB)
Download
Annexes
sibt2023.pdf
(3.49 MB)
Download

All documents in ORBi UMONS are protected by a user license.

Send to



Details



Keywords :
automatic modulation recognition; AMR; automatic modulation classification; AMC; cognitive radio; bivariate empirical mode decomposition; parameters BEMD; decomposition; convolutional neural networks; CNN
Abstract :
[en] On the one hand, the AMR (Automatic Modulation Recognition) realm has recently shown an increase of interest, particularly as an application for monitoring the physical layer of wireless transmissions. It consists in determining the employed modulation type of a sensed Radio Frequency (RF) signal at a given time, space and frequency. Moreover, it is a key component of intelligent radio systems such as Cognitive Radios (CR) that are key devices for Massive IoT (MIoT), autonomous cars, drones, 5G, 6G, etc. On the other hand, Bivariate Empirical Mode Decomposition (BEMD) is a signal decomposition method that can distill signals into a finite number of Intrinsic Mode Functions (IMFs) through a process known as sifting. BEMD is specifically designed to decompose bivariate (e.g. complex) signals, such as complex IQ samples of telecommunication data time series. The IMFs in conjunction with an AI architecture permits modulation classification. This paper specifically focuses on the influence of BEMD parameters on component extraction, namely the number of applied sifts and projections. The impact of linear interpolation method vs cubic spline interpolation method is also presented.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Gros, Alexander ;  Université de Mons - UMONS > Faculté Polytechniqu > Service d'Electromagnétisme et Télécommunications
Moeyaert, Véronique ;  Université de Mons - UMONS > Faculté Polytechniqu > Service d'Electromagnétisme et Télécommunications ; Université de Mons - UMONS > Faculté Polytechnique > Electromagnétisme et Télécommunications
Mégret, Patrice  ;  Université de Mons - UMONS > Faculté Polytechniqu > Service d'Electromagnétisme et Télécommunications
Language :
English
Title :
The influence of Bivariate Empirical Mode Decomposition parameters on AI-based Automatic Modulation Recognition accuracy
Publication date :
11 May 2023
Event name :
43rd Symposium on Information Theory and Signal Processing in the Benelux (SITB 2023)
Event organizer :
IEEE Benelux Signal Processing Chapter
Werkgemeenschap voor Informatie- en Communicatietheorie (WIC)
Event place :
Brussels, Belgium
Event date :
from 11 to 12 May 2023
Audience :
International
Peer reviewed :
Peer reviewed
Research unit :
F108 - Electromagnétisme et Télécommunications
Research institute :
Infortech
Funding text :
This work is supported by the Wallonia Region research project CyberExcellence, n° 2110186.
Available on ORBi UMONS :
since 12 January 2024

Statistics


Number of views
12 (3 by UMONS)
Number of downloads
17 (2 by UMONS)

Bibliography


Similar publications



Contact ORBi UMONS