[en] On the one hand, the AMR (Automatic Modulation Recognition) realm has recently shown an increase of interest, particularly as an application for monitoring the physical layer
of wireless transmissions. It consists in determining the employed modulation type of a sensed Radio Frequency (RF) signal at a given time, space and frequency. Moreover, it is a key component of intelligent radio systems such as Cognitive Radios (CR) that
are key devices for Massive IoT (MIoT), autonomous cars, drones, 5G, 6G, etc. On the other hand, Bivariate Empirical Mode Decomposition (BEMD) is a signal decomposition method that can distill signals into a finite number of Intrinsic Mode Functions (IMFs) through a process known as sifting. BEMD is specifically designed to decompose bivariate (e.g. complex) signals, such as complex IQ samples of telecommunication data time series. The
IMFs in conjunction with an AI architecture permits modulation classification.
This paper specifically focuses on the influence of BEMD parameters on component extraction, namely the number of applied sifts and projections. The impact of linear interpolation method vs cubic spline interpolation method is also presented.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Gros, Alexander ; Université de Mons - UMONS > Faculté Polytechniqu > Service d'Electromagnétisme et Télécommunications
Moeyaert, Véronique ; Université de Mons - UMONS > Faculté Polytechniqu > Service d'Electromagnétisme et Télécommunications ; Université de Mons - UMONS > Faculté Polytechnique > Electromagnétisme et Télécommunications
Mégret, Patrice ; Université de Mons - UMONS > Faculté Polytechniqu > Service d'Electromagnétisme et Télécommunications
Language :
English
Title :
The influence of Bivariate Empirical Mode Decomposition parameters on AI-based Automatic Modulation Recognition accuracy
Publication date :
11 May 2023
Event name :
43rd Symposium on Information Theory and Signal Processing in the Benelux (SITB 2023)
Event organizer :
IEEE Benelux Signal Processing Chapter Werkgemeenschap voor Informatie- en Communicatietheorie (WIC)