Paper published in a journal (Scientific congresses and symposiums)
FPGA-Accelerated Convolutional Neural Network
Chelkha, Mohammed; Valderrama, Carlos Alberto; Ahaitouf, Ali
2023In Proceedings SPL2023 XI SOUTHERN PROGRAMMABLE LOGIC CONFERENCE
Peer reviewed
 

Files


Full Text
SPL23_paper_4350-1.pdf
Author postprint (115.12 kB)
Download

All documents in ORBi UMONS are protected by a user license.

Send to



Details



Keywords :
Reconfigurable circuits; deep learning; Convolutional neural networks; image processing
Abstract :
[en] In recent years, FPGA has become an attractive solution to accelerate CNN classification for its flexibility, short time-to-market, and energy efficiency. The real-time evaluation of a CNN for image classification on a live video stream can require billions or trillions of operations per second. To come with a competitive re-configurable implementation satisfying both development time and flexibility, we propose using as a base a re-configurable Architecture composed by a set of image and video processing blocks. The whole architecture can be configured on-the-fly based on the image characteristics thus supporting variable image resolutions for each layer of the CNN.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Chelkha, Mohammed ;  UMONS - Université de Mons [BE] > Electricité > Electronique et Microelectronique
Valderrama, Carlos Alberto  ;  Université de Mons - UMONS > Faculté Polytechniqu > Service d'Electronique et Microélectronique
Ahaitouf, Ali;  USMBA > FST-FES
 These authors have contributed equally to this work.
Language :
English
Title :
FPGA-Accelerated Convolutional Neural Network
Publication date :
30 March 2023
Event name :
XI Southern Programmable Logic Conference SPL 2023
Event organizer :
Universidad Naciona de San Luis (UNSL, Argentina)
Event place :
San Luis, Argentina
Event date :
27-31 March 2023
By request :
Yes
Audience :
International
Journal title :
Proceedings SPL2023 XI SOUTHERN PROGRAMMABLE LOGIC CONFERENCE
Peer reviewed :
Peer reviewed
Research unit :
F109 - Electronique et Microélectronique
Research institute :
R300 - Institut de Recherche en Technologies de l'Information et Sciences de l'Informatique
R450 - Institut NUMEDIART pour les Technologies des Arts Numériques
Available on ORBi UMONS :
since 17 January 2024

Statistics


Number of views
56 (3 by UMONS)
Number of downloads
75 (1 by UMONS)

Bibliography


Similar publications



Contact ORBi UMONS