Berglund, M., Wikström, N., Fureby, C., Numerical Simulation of Scramjet Combustion: Tech. rep., 2005, Swedish Defence Research Agency - FOI.
Sabelnikov, V.A., Vlasenko, V.V., Combustion in supersonic flows and scramjet combustion simulation. De, S., Agarwal, A.K., Chaudhuri, S., Sen, S., (eds.) Modeling and Simulation of Turbulent Combustion, 2018, Springer, Singapore, 585–660, 10.1007/978-981-10-7410-3_20.
MacKay, J.S., Weber, R.J., An analysis of ramjet engines using supersonic combustion. 1958.
Choubey, G., Solanki, M., Bhatt, T., Kshitij, G., Yuvarajan, D., Huang, W., Numerical investigation on a typical scramjet combustor using cavity floor H2 fuel injection strategy. Acta Astronaut. 202 (2023), 373–385, 10.1016/j.actaastro.2022.10.055.
Cai, Z., Liu, X., Gong, C., Sun, M., Wang, Z., Bai, X.-S., Large Eddy Simulation of the fuel transport and mixing process in a scramjet combustor with rearwall-expansion cavity. Acta Astronaut. 126 (2016), 375–381, 10.1016/j.actaastro.2016.05.010.
Micka, D.J., Driscoll, J.F., Combustion characteristics of a dual-mode scramjet combustor with cavity flameholder. Proc. Combust. Inst. 32:2 (2009), 2397–2404, 10.1016/j.proci.2008.06.192.
Yang, Y., Wang, Z., Sun, M., Wang, H., Li, L., Numerical and experimental study on flame structure characteristics in a supersonic combustor with dual-cavity. Acta Astronaut. 117 (2015), 376–389, 10.1016/j.actaastro.2015.09.005.
Wang, H., Wang, Z., Sun, M., Qin, N., Large eddy simulation of a hydrogen-fueled scramjet combustor with dual cavity. Acta Astronaut. 108 (2015), 119–128, 10.1016/j.actaastro.2014.12.008.
Candon, M., Ogawa, H., Numerical analysis and design optimization of supersonic after-burning with strut fuel injectors for scramjet engines. Acta Astronaut. 147 (2018), 281–296, 10.1016/j.actaastro.2018.04.012.
Pandey, K., Roga, S., Choubey, G., Numerical investigation on hydrogen-fueled scramjet combustor with parallel strut fuel injector at a flight mach number of 6. J. Appl. Fluid Mech. 9:3 (2016), 1215–1220, 10.18869/acadpub.jafm.68.228.24082.
Ispir, A.C., Zdybał, K., Saracoglu, B.H., Magin, T., Parente, A., Coussement, A., Reduced-order modeling of supersonic fuel–air mixing in a multi-strut injection scramjet engine using machine learning techniques. Acta Astronaut. 202 (2023), 564–584, 10.1016/j.actaastro.2022.11.013.
Choubey, G., Pandey, K., Effect of different wall injection schemes on the flow-field of hydrogen fuelled strut-based scramjet combustor. Acta Astronaut. 145 (2018), 93–104, 10.1016/j.actaastro.2018.01.034.
Kummitha, O.R., Pandey, K.M., Gupta, R., CFD analysis of a scramjet combustor with cavity based flame holders. Acta Astronaut. 144 (2018), 244–253, 10.1016/j.actaastro.2018.01.005.
Yarasai, S.S., Ravi, D., Yoganand, S., Raj Rajagopal, T.K., Numerical investigation on the performance and combustion characteristics of a cavity based scramjet combustor with novel strut injectors. Int. J. Hydrogen Energy 48:14 (2023), 5681–5695, 10.1016/j.ijhydene.2022.11.150.
Génin, F., Menon, S., Simulation of turbulent mixing behind a strut injector in supersonic flow. AIAA J. 48:3 (2010), 526–539, 10.2514/1.43647.
Poinsot, T., Veynante, D., Theoretical and Numerical Combustion. 2005, RT Edwards, Inc.
Waidmann, W., Alff, F., Brummund, U., Böhm, M., Clauss, W., Oschwald, M., Experimental Investigation of the Combustion Process in a Supersonic Combustion Ramjet: Tech. rep., 1994, DLR Institute for Chemical Propulsion and Engineering, Hardthausen, Germany.
Edwards, J., Boles, J., Baurle, R., LES/RANS simulation of a supersonic reacting wall jet. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2010, 10.2514/6.2010-370.
Burrows, M.C., Kurkov, A.P., Analytical and Experimental Study of Supersonic Combustion of Hydrogen in a Vitiated Airstream: Tech. Rep. NASA-TM-X-2828., 1973, NASA.
Swaminathan, N., Physical insights on MILD combustion from DNS. Front. Mech. Eng., 5, 2019, 10.3389/fmech.2019.00059.
Mura, A., Techer, A., Lehnasch, G., Analysis of high-speed combustion regimes of hydrogen jet in supersonic vitiated airstream. Combust. Flame, 239, 2022, 111552, 10.1016/j.combustflame.2021.111552.
Bhagwandin, V., Engblom, W., Georgiadis, N., Numerical simulation of a hydrogen-fueled dual-mode scramjet engine using wind-US. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2009, 10.2514/6.2009-5382.
Menter, F.R., Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32:8 (1994), 1598–1605, 10.2514/3.12149.
A. Ahmad Khan, V.S. Iyengar, Numerical Simulation of Supersonic Combustion of Hydrogen in a vitiated air stream, in: 11th AeSI Annual CFD Symposium, 2009.
Oevermann, M., Numerical investigation of turbulent hydrogen combustion in a SCRAMJET using flamelet modeling. Aerosp. Sci. Technol., 4(7), 2000, 10.1016/S1270-9638(00)01070-1.
Li, Z., Cuoci, A., Sadiki, A., Parente, A., Finite-rate chemistry modelling of non-conventional combustion regimes. Energy Procedia 142 (2017), 1570–1576, 10.1016/j.egypro.2017.12.608.
Iavarone, S., Cafiero, M., Ferrarotti, M., Contino, F., Parente, A., A multiscale combustion model formulation for NOx predictions in hydrogen-enriched jet flames. Int. J. Hydrogen Energy 44:41 (2019), 23436–23457, 10.1016/j.ijhydene.2019.07.019.
Amaduzzi, R., Bertolino, A., Özden, A., Galassi, R.M., Parente, A., Impact of scalar mixing uncertainty on the predictions of reactor-based closures: Application to a lifted methane/air jet flame. Proc. Combust. Inst., 2022, 10.1016/j.proci.2022.06.028.
Ferrarotti, M., Fürst, M., Cresci, E., de Paepe, W., Parente, A., Key modeling aspects in the simulation of a quasi-industrial 20 kW moderate or intense low-oxygen dilution combustion chamber. Energy Fuels 32:10 (2018), 10228–10241, 10.1021/acs.energyfuels.8b01064.
Amaduzzi, R., Ferrarotti, M., Parente, A., Strategies for hydrogen-enriched methane flameless combustion in a quasi-industrial furnace. Front. Energy Res., 8, 2021, 10.3389/fenrg.2020.590300.
Iavarone, S., Péquin, A., Chen, Z.X., Doan, N.A.K., Swaminathan, N., Parente, A., An a priori assessment of the Partially Stirred Reactor (PaSR) model for MILD combustion. Proc. Combust. Inst. 38:4 (2021), 5403–5414, 10.1016/j.proci.2020.06.234.
Li, Z., Ferrarotti, M., Cuoci, A., Parente, A., Finite-rate chemistry modelling of non-conventional combustion regimes using a Partially-Stirred Reactor closure: Combustion model formulation and implementation details. Appl. Energy 225 (2018), 637–655, 10.1016/j.apenergy.2018.04.085.
Li, Z., Cuoci, A., Sadiki, A., Parente, A., Comprehensive numerical study of the Adelaide Jet in Hot-Coflow burner by means of RANS and detailed chemistry. Energy 139 (2017), 555–570, 10.1016/j.energy.2017.07.132.
Berglund, M., Fedina, E., Fureby, C., Tegner, J., Sabelnikov, V., Finite rate chemistry large-eddy simulation of self-ignition in supersonic combustion ramjet. AIAA J. 48:3 (2010), 540–550, 10.2514/1.43746.
Scherrer, D., Dessornes, O., Ferrier, M., Vincent-Randonnier, A., Sabelnikov, V., Moule, Y., Research on supersonic combustion and scramjet combustors at ONERA. Onera Aerospacelab J., 11, 2016, 10.12762/2016.AL11-04.
Fureby, C., Fedina, E., Tegnér, J., A computational study of supersonic combustion behind a wedge-shaped flameholder. Shock Waves 24 (2013), 41–50, 10.1007/s00193-013-0459-2.
Sunami, T., Magre, P., Bresson, A., Grisch, F., Orain, M., Kodera, M., Experimental study of strut injectors in a supersonic combustor using OH-PLIF. AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference, 2005, 10.2514/6.2005-3304.
Ertesvåg, I.S., Magnussen, B.F., The eddy dissipation turbulence energy cascade model. Combust. Sci. Technol. 159:1 (2000), 213–235, 10.1080/00102200008935784.
Magnussen, B., Hjertager, B., On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symp. (Int.) Combust. 16:1 (1977), 719–729, 10.1016/S0082-0784(77)80366-4.
Parente, A., Malik, M.R., Contino, F., Cuoci, A., Dally, B.B., Extension of the Eddy Dissipation Concept for turbulence/chemistry interactions to MILD combustion. Fuel 163 (2016), 98–111, 10.1016/j.fuel.2015.09.020.
Gran, I.R., Magnussen, B.F., A numerical study of a bluff-body stabilized diffusion flame. Part 2. Influence of combustion modeling and finite-rate chemistry. Combust. Sci. Technol. 119:1–6 (1996), 191–217, 10.1080/00102209608951999.
Péquin, A., Iavarone, S., Malpica Galassi, R., Parente, A., The partially stirred reactor model for combustion closure in large eddy simulations: Physical principles, sub-models for the cell reacting fraction, and open challenges. Phys. Fluids, 34(5), 2022, 055122, 10.1063/5.0090970.
Ferrarotti, M., Li, Z., Parente, A., On the role of mixing models in the simulation of MILD combustion using finite-rate chemistry combustion models. Proc. Combust. Inst. 37 (2019), 4531–4538, 10.1016/j.proci.2018.07.043.
Sanders, J., Gökalp, I., Scalar dissipation rate modelling in variable density turbulent axisymmetric jets and diffusion flames. Phys. Fluids 10:4 (1998), 938–948, 10.1063/1.869616.
Ye, I.K., Investigation of the Scalar Variance and Scalar Dissipation Rate in URANS and LES. (Ph.D. thesis), 2011, University of Waterloo.
Jones, W.P., Musonge, P., Closure of the Reynolds stress and scalar flux equations. Phys. Fluids 31:12 (1988), 3589–3604, 10.1063/1.866876.
Borghi, R., Turbulent premixed combustion: Further discussions on the scales of fluctuations. Combust. Flame 80:3 (1990), 304–312, 10.1016/0010-2180(90)90106-2.
Vyas, M., Burrows and Kurkov supersonic combustion: Study #2. 2014 accessed on Feb 2023. URL https://www.grc.nasa.gov/WWW/wind/valid/bk/study02/bk2.html.
Gibson, M., Launder, B., Ground effects on pressure fluctuations in the atmospheric boundary layer. J. Fluid Mech. 86 (1978), 491–511, 10.1017/S0022112078001251.
Launder, B., Reece, G., Rodi, W., Progress in the development of a Reynolds stress turbulence closure. J. Fluid Mech. 68 (1975), 537–566, 10.1017/S0022112075001814.
Menter, F.R., Matyushenko, A., Lechner, R., Development of a generalized K-ω two-equation turbulence model. Dillmann, A., Heller, G., Krämer, E., Wagner, C., Tropea, C., Jakirlić, S., (eds.) New Results in Numerical and Experimental Fluid Mechanics XII, 2020, Springer, Cham, 101–109.
Li, J., Zhao, Z., Kazakov, A., L. Dryer, F., An updated comprehensive kinetic model of hydrogen combustion. Int. J. Chem. Kinet. 36 (2004), 566–575, 10.1002/kin.20026.
Jachimowski, C.J., Analytical Study of the Hydrogen-Air Reaction Mechanism with Application to Scramjet Combustion: Tech. Rep. NASA-TP-2791., 1988, NASA URL https://www.osti.gov/biblio/5307500.
Cao, C., Ye, T., Zhao, M., Large eddy simulation of hydrogen/air scramjet combustion using tabulated thermo-chemistry approach. Chin. J. Aeronaut. 28:5 (2015), 1316–1327, 10.1016/j.cja.2015.08.008.
Masuya, G., Komuro, T., Murakami, A., Shinozaki, N., Nakamura, A., Murayamall, M., Ohwaki, K., Ignition and combustion performance of scramjet combustors with fuel injection struts. J. Propuls. Power 11:2 (1995), 301–307, 10.2514/3.51425.
Gruber, M., Nejad, A., Dutton, J., Circular and elliptical transverse injection into a supersonic crossflow - The role of large-scale structures. Fluid Dynamics Conference, 1995, 10.2514/6.1995-2150.
Oberkampf, W.L., Barone, M.F., Measures of agreement between computation and experiment: Validation metrics. J. Comput. Phys. 217:1 (2006), 5–36, 10.1016/j.jcp.2006.03.037.
Choubey, G., Tiwari, M., Scramjet Combustion: Fundamentals and Advances. 2022, Butterworth-Heinemann, UK, 10.1016/C2021-0-02204-5.
Xiang, Z., Yang, S., Xie, S., Li, J., Ren, H., Turbulence–chemistry interaction models with finite-rate chemistry and compressibility correction for simulation of supersonic turbulent combustion. Eng. Appl. Comput. Fluid Mech. 14:1 (2020), 1546–1561, 10.1080/19942060.2020.1842248.
Huang, S., Chen, Q., Numerical evaluation of shock wave effects on turbulent mixing layers in a scramjet combustor. Case Stud. Therm. Eng., 25, 2021, 10.1016/j.csite.2021.100893.
Gao, Z., Wang, J., Jiang, C., Lee, C., Application and theoretical analysis of the flamelet model for supersonic turbulent combustion flows in the scramjet engine. Combust. Theory Model. 18:6 (2014), 652–691, 10.1080/13647830.2014.962617.
Li, P., Wang, F., Mi, J., Dally, B.B., Mei, Z., MILD combustion under different premixing patterns and characteristics of the reaction regime. Energy Fuels 28:3 (2014), 2211–2226, 10.1021/ef402357t.
Shetinkov, E., Calculation of flame velocity in turbulent stream. Symp. (Int.) Combust. 7:1 (1958), 583–589, 10.1016/S0082-0784(58)80095-8.
Bellenoue, M., Etude Expérimentale de la Combustion Initiée par Effet Catalytique d'un Mélange Hydrogène-Air en Écoulement Supersonique. (Ph.D. thesis), 1997, University of Poitiers.