Multi-objective optimization of a hybrid carbon capture plant combining a Vacuum Pressure Swing Adsorption (VPSA) process with a Carbon Purification unit (CPU)
[en] The imperative challenge posed by climate change requires urgent actions to counteract the harmful effects of greenhouse gas emissions, particularly CO2, which contributes to approximately 80 % of emissions responsible for global warming. A hybrid system combining Vacuum Pressure Swing Adsorption (VPSA) unit with a Cryogenic Carbon Purification Unit (CPU) is evaluated to enhance recovery and purity of CO2captured from flue gas containing CO2 concentration ranging from 5 % to 20 %. VPSA preconcentrates the CO2 and CPU completes the separation and purifies the CO2. The study uses surrogate models for multi-objective optimization, considering energy consumption, cost, and CO2 recovery, providing a time-efficient approach for investigating computationally demanding processes. Results from the study indicate that the hybrid system achieves over 90 % recovery for flue gas concentration range considered, while ensuring the production of high-purity CO2 (>99.99 %) suitable for transportation. A trade-off analysis reveals the balance between recovery, electricity consumption, and economic viability. A sensitivity analysis identifies parameters influencing recovery and energy consumption, providing guidance for future optimization efforts. The techno-economic analysis highlights the impact of electricity prices and carbon taxes on total costs, identifying an optimum towards higher recovery values under rising carbon taxes. Furthermore, the research underscores concentration-dependent economic feasibility, emphasizing the attractiveness of concentrations above 10 % compared with other technologies, which require higher concentrations. For an electricity price of 75 €.MWh−1, the total cost of the CO2 capture hydride system considering CO2 emissions with carbon tax of 100 €.tCO2−1 for concentrations ranging from 10 % to 20 % is from 123 to 80 €.tCO2−1, respectively. The analysis of the electricity source shows the importance of a low-carbon emission energy mix for optimal carbon emission reduction.
Disciplines :
Chemical engineering Energy
Author, co-author :
Costa, Alexis ✱; Université de Mons - UMONS > Faculté Polytechnique > Service de Thermodynamique, Physique mathématiques
Henrotin, Arnaud ✱; Université de Mons - UMONS > Faculté Polytechnique > Service de Thermodynamique, Physique mathématiques
Heymans, Nicolas ; Université de Mons - UMONS > Faculté Polytechnique > Service de Thermodynamique, Physique mathématiques
Dubois, Lionel ; Université de Mons - UMONS > Faculté Polytechnique > Service de Génie des Procédés chimiques et biochimiques
Thomas, Diane ; Université de Mons - UMONS > Faculté Polytechnique > Service de Génie des Procédés chimiques et biochimiques
De weireld, Guy ; Université de Mons - UMONS > Faculté Polytechnique > Service de Thermodynamique, Physique mathématiques
✱ These authors have contributed equally to this work.
Language :
English
Title :
Multi-objective optimization of a hybrid carbon capture plant combining a Vacuum Pressure Swing Adsorption (VPSA) process with a Carbon Purification unit (CPU)
F506 - Thermodynamique, Physique mathématiques F505 - Génie des Procédés chimiques et biochimiques
Research institute :
R200 - Institut de Recherche en Energie
Name of the research project :
5511 - DRIVER - FTE 2021 - Développement d'un modèle de maRché, Infrastructurel et régulatoire, du CO2 comme Vecteur pour le stockage d'Energie Renouvelable - Sources fédérales
Funders :
SPF Economie - Service Public Fédéral Économie, PME, Classes moyennes et Énergie
IPCC, Synthesis report of the IPCC sixth assessment Report (AR6), Panmao Zhai, 2023.
UNFCCC, The Paris Agreement, (2021). https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed October 11, 2021).
A. Runge-Metzger, A Clean Planet for all A European strategic long term vision for a prosperous, modern, competitive and climate neutral economy, 2018.
ZEP, CCS/CCU projects, (2022). https://zeroemissionsplatform.eu/about-ccs-ccu/css-ccu-projects/ (accessed September 15, 2022).
I. Phillips, A. Tucker, P.-O. Granstrom, G. Bozzini, C. Gent, P.J. Capello, A. Clifton, C. Clucas, B. Dolek, P.-Y. Duclos, M. Faou, D. Fletcher, J. Todd, C. Metcalf, F. Neele, M. Reid, J. Senkel, J. Simpson, H. StigterTrevor Crowe, W. Versteele, S. Wong, Network Technology: Guidance for CO2 transport by ship, 2022.
] Fluxys, Carbon Specification Proposal Fluxys Belgium SA, 2022.
García-Bordejé, E., Belén Dongil, A., Conesa, J.M., Guerrero-Ruiz, A., Rodríguez-Ramos, I., Dual functional materials based on Ni and different alkaline metals on alumina for the cyclic stepwise CO2 capture and methanation. Chem. Eng. J., 472, 2023, 10.1016/j.cej.2023.144953.
Yadav, S., Mondal, S.S., A review on the progress and prospects of oxy-fuel carbon capture and sequestration (CCS) technology. Fuel, 308, 2022, 10.1016/j.fuel.2021.122057.
Bains, P., Psarras, P., Wilcox, J., CO2 capture from the industry sector. Prog. Energy Combust. Sci. 63 (2017), 146–172, 10.1016/j.pecs.2017.07.001.
Chen, C., Yang, S., The energy demand and environmental impacts of oxy-fuel combustion vs. post-combustion capture in China. Energ. Strat. Rev., 38, 2021, 10.1016/j.esr.2021.100701.
Bahman, N., Al-Khalifa, M., Al Baharna, S., Abdulmohsen, Z., Khan, E., Review of carbon capture and storage technologies in selected industries: potentials and challenges. Rev. Environ. Sci. Biotechnol. 22 (2023), 451–470, 10.1007/s11157-023-09649-0.
Gao, G., Xu, B., Gao, X., Jiang, W., Zhao, Z., Li, X., Luo, C., Wu, F., Zhang, L., New insights into the structure-activity relationship for CO2 capture by tertiary amines from the experimental and quantum chemical calculation perspectives. Chem. Eng. J., 473, 2023, 145277, 10.1016/j.cej.2023.145277.
Dziejarski, B., Krzyżyńska, R., Andersson, K., Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment. Fuel, 342, 2023, 10.1016/j.fuel.2023.127776.
Sukor, N.R., Shamsuddin, A.H., Mahlia, T.M.I., Isa, M.F.M., Techno-economic analysis of CO2 capture technologies in offshore natural gas field: Implications to carbon capture and storage in Malaysia. Processes, 8, 2020, 10.3390/pr8030350.
Gutierrez-Ortega, A., Nomen, R., Sempere, J., Parra, J.B., Montes-Morán, M.A., Gonzalez-Olmos, R., A fast methodology to rank adsorbents for CO2 capture with temperature swing adsorption. Chem. Eng. J., 435, 2022, 10.1016/j.cej.2022.134703.
Jung, W., Lee, J., Lee, J.S., New facile process evaluation for membrane-based CO2 capture: Apparent selectivity model. Chem. Eng. J., 460, 2023, 10.1016/j.cej.2023.141624.
Delgado, M.A., Diego, R., Alvarez, I., Ramos, J., Lockwood, F., CO2 balance in a compression and purification unit (CPU). Energy Procedia, 2014, Elsevier Ltd, 322–331, 10.1016/j.egypro.2014.11.035.
Baxter, L., Hoeger, C., Stitt, K., Burt, S., Baxter, A., Cryogenic Carbon CaptureTM (CCC). Status Report, in: 15th International Conference on Greenhouse Gas Control Technologies, 2021.
Koohestanian, E., Shahraki, F., Review on principles, recent progress, and future challenges for oxy-fuel combustion CO2 capture using compression and purification unit. J. Environ. Chem. Eng. 9 (2021), 1–20, 10.1016/j.jece.2021.105777.
Song, C., Liu, Q., Ji, N., Deng, S., Zhao, J., Li, Y., Song, Y., Li, H., Alternative pathways for efficient CO2 capture by hybrid processes—A review. Renew. Sustain. Energy Rev. 82 (2018), 215–231, 10.1016/j.rser.2017.09.040.
Torres, F.B., Gutierrez, J.P., Ruiz, L.A., Bertuzzi, M.A., Erdmann, E., Comparative analysis of absorption, membrane, and hybrid technologies for CO2 recovery. J. Nat. Gas Sci. Eng., 94, 2021, 10.1016/j.jngse.2021.104082.
R.M. Montañés, L. Riboldi, S. Roussanaly, A. Ouassou, S.G. Subraveti, R. Anantharaman, Techno-economic assessment of the hybrid adsorption-membrane concept for post-combustion CO2 capture from industry flue gases, (2022). https://ssrn.com/abstract=4282863.
S. Fu, Bench Scale Testing of Next Generation Hollow Fiber Membrane, 2019.
Hasse, D., Kulkarni, S., Sanders, E., Corson, E., Tranier, J.P., CO2 capture by sub-ambient membrane operation, in. Energy Procedia, Elsevier Ltd, 2013, 993–1003, 10.1016/j.egypro.2013.05.195.
Hasse, D., Ma, J., Kulkarni, S., Terrien, P., Tranier, J.P., Sanders, E., Chaubey, T., Brumback, J., CO2 capture by cold membrane operation, in. Energy Procedia, Elsevier Ltd, 2014, 186–193, 10.1016/j.egypro.2014.11.019.
T. Chaubey, S. Kulkarni, D. Hasse, A. Augustine, CO2 Capture by Cold Membrane Operation with Actual Power Plant Flue Gas, 2017.
Li, J.C., Fong, Y., Anderson, C.J., Xiao, G., Webley, P.A., Hoadley, A.F.A., Multi-objective optimisation of a hybrid vacuum swing adsorption and low-temperature post-combustion CO2 capture. J. Clean. Prod. 111 (2016), 193–203, 10.1016/j.jclepro.2015.08.033.
Rodrigues, G., Raventos, M., Dubettier, R., Ruban, S., Adsorption assisted cryogenic carbon capture: an alternate path to steam driven technologies to decrease cost and carbon footprint. 15th International Conference on Greenhouse Gas Control Technologies, 2021.
Rodrigues, G., Dubettier, R., Tran, M., Cruz, B., Capturing the benefits of increasing CO2 concentration in a flue gas through CryocapTM FG 1. 16th International Conference on Greenhouse Gas Control Technologies, 2022.
Ruthven, D., Principles of Adsorption and Adsorption Processes, First. 1984, John Wiley & Sons, New York.
Grande, C.A., Advances in Pressure Swing Adsorption for Gas Separation. ISRN Chem. Eng. 2012 (2012), 1–13, 10.5402/2012/982934.
Riboldi, L., Bolland, O., Overview on Pressure Swing Adsorption (PSA) as CO2 Capture Technology: State-of-the-Art, Limits and Potentials. Energy Procedia 114 (2017), 2390–2400, 10.1016/j.egypro.2017.03.1385.
Rajagopalan, A.K., Avila, A.M., Rajendran, A., Do adsorbent screening metrics predict process performance? A process optimisation based study for post-combustion capture of CO2. Int. J. Greenhouse Gas Control 46 (2016), 76–85, 10.1016/j.ijggc.2015.12.033.
Chue, K.T., Kim, J.N., Yoo, Y.J., Cho, S.H., Yang, R.T., Comparison of Activated Carbon and Zeolite 13X for CO2 Recovery from Flue Gas by Pressure Swing Adsorption. Ind. Eng. Chem. Res. 34 (1995), 591–598, 10.1021/ie00041a020.
Hu, Z., Wang, Y., Shah, B.B., Zhao, D., CO2 capture in metal-organic framework adsorbents: an engineering perspective. Adv. Sustain. Syst., 3, 2019, 1800080, 10.1002/adsu.201800080.
Raganati, F., Miccio, F., Ammendola, P., Adsorption of carbon dioxide for post-combustion capture: a review. Energy Fuel 35 (2021), 12845–12868, 10.1021/acs.energyfuels.1c01618.
Li, G., Xiao, P., Webley, P., Zhang, J., Singh, R., Marshall, M., Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X. Adsorption 14 (2008), 415–422, 10.1007/s10450-007-9100-y.
C.W. Skarstrom, Method and apparatus for fractionating gaseous mixtures by adsorption, US2944627, 1960.
Shen, C., Yu, J., Li, P., Grande, C.A., Rodrigues, A.E., Capture of CO2 from flue gas by vacuum pressure swing adsorption using activated carbon beads. Adsorption 17 (2011), 179–188, 10.1007/s10450-010-9298-y.
Jiang, N., Shen, Y., Liu, B., Zhang, D., Tang, Z., Li, G., Fu, B., CO2 capture from dry flue gas by means of VPSA, TSA and TVSA. J. CO2 Util. 35 (2020), 153–168, 10.1016/j.jcou.2019.09.012.
Haghpanah, R., Majumder, A., Nilam, R., Rajendran, A., Farooq, S., Karimi, I.A., Amanullah, M., Multiobjective optimization of a four-step adsorption process for postcombustion CO2 capture via finite volume simulation. Ind. Eng. Chem. Res. 52 (2013), 4249–4265, 10.1021/ie302658y.
Haghpanah, R., Nilam, R., Rajendran, A., Farooq, S., Karimi, I.A., Cycle synthesis and optimization of a VSA process for postcombustion CO2 capture. AIChE J. 59 (2013), 4735–4748, 10.1002/aic.14192.
Krishnamurthy, S., Rao, V.R., Guntuka, S., Sharratt, P., Haghpanah, R., Rajendran, A., Amanullah, M., Karimi, I.A., Farooq, S., CO2 capture from dry flue gas by vacuum swing adsorption: A pilot plant study. AIChE J. 60 (2014), 1830–1842, 10.1002/aic.14435.
Wang, L., Liu, Z., Li, P., Wang, J., Yu, J., CO2 capture from flue gas by two successive VPSA units using 13XAPG. Adsorption 18 (2012), 445–459, 10.1007/s10450-012-9431-1.
Zhang, J., Webley, P.A., Xiao, P., Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas. Energy Convers. Manag. 49 (2008), 346–356, 10.1016/j.enconman.2007.06.007.
Xiao, P., Zhang, J., Webley, P., Li, G., Singh, R., Todd, R., Capture of CO2 from flue gas streams with zeolite 13X by vacuum-pressure swing adsorption. Adsorption 14 (2008), 575–582, 10.1007/s10450-008-9128-7.
Kolster, C., Mechleri, E., Krevor, S., Mac Dowell, N., The role of CO2 purification and transport networks in carbon capture and storage cost reduction. Int. J. Greenhouse Gas Control 58 (2017), 127–141, 10.1016/j.ijggc.2017.01.014.
Jin, B., Zhao, H., Zheng, C., Thermoeconomic cost analysis of CO2 compression and purification unit in oxy-combustion power plants. Energy Convers. Manag. 106 (2015), 53–60, 10.1016/j.enconman.2015.09.014.
Jin, B., Zhao, H., Zheng, C., Optimization and control for CO2 compression and purification unit in oxy-combustion power plants. Energy 83 (2015), 416–430, 10.1016/j.energy.2015.02.039.
Li, H., Hu, Y., Ditaranto, M., Willson, D., Yan, J., Optimization of cryogenic CO2 purification for oxy-coal combustion. Energy Procedia 37 (2013), 1341–1347, 10.1016/j.egypro.2013.06.009.
Magli, F., Spinelli, M., Fantini, M., Romano, M.C., Gatti, M., Techno-economic optimization and off-design analysis of CO2 purification units for cement plants with oxyfuel-based CO2 capture. Int. J. Greenhouse Gas Control, 115, 2022, 103591, 10.1016/j.ijggc.2022.103591.
Luyben, W.L., Simple control structure for a compression purification process in an oxy-combustion power plant. AIChE J. 61 (2015), 1581–1588, 10.1002/aic.14754.
Koohestanian, E., Sadeghi, J., Mohebbi Kalhori, D., Shahraki, F., Samimi, A., New Process Flowsheet for CO2 Compression and Purification Unit; Dynamic Investigation and Control. J. Chem. Chem. Eng. Res. Article 40 (2021), 593–604, 10.30492/ijcce.2020.37779.
M.M. Shah, Carbon dioxide (CO2) compression and purification technology for oxy-fuel combustion, in: Oxy-Fuel Combustion for Power Generation and Carbon Dioxide (CO2) Capture, Woodhead Publishing Limited, 2011: pp. 228–255. https://doi.org/10.1533/9780857090980.2.228.
N. Chambron, P. Terrien, Capture de CO2 par unité cryogénique sur une centrale de type gazéification intégrée à cycle combiné, FR2997866A3, 2014.
Zhang, Q., Li, Y., Zhang, Q., Ma, F., Lü, X., Application of deep dehumidification technology in low-humidity industry: A review. Renew. Sustain. Energy Rev., 193, 2024, 114278, 10.1016/j.rser.2024.114278.
Yang, Y., Chen, Y., Xu, Z., Wang, L., Zhang, P., A three-bed six-step TSA cycle with heat carrier gas recycling and its model-based performance assessment for gas drying. Sep. Purif. Technol., 237, 2020, 116335, 10.1016/J.SEPPUR.2019.116335.
Zhang, J., Webley, P.A., Cycle development and design for CO2 capture from flue gas by vacuum swing adsorption. Environ. Sci. Tech. 42 (2008), 563–569, 10.1021/es0706854.
Wang, L., Yang, Y., Shen, W., Kong, X., Li, P., Yu, J., Rodrigues, A.E., Experimental evaluation of adsorption technology for CO2 capture from flue gas in an existing coal-fired power plant. Chem. Eng. Sci. 101 (2013), 615–619, 10.1016/j.ces.2013.07.028.
Yu, X., Liu, B., Shen, Y., Zhang, D., Design and experiment of high-productivity two-stage vacuum pressure swing adsorption process for carbon capturing from dry flue gas. Chin. J. Chem. Eng. 43 (2022), 378–391, 10.1016/j.cjche.2021.02.022.
Farmahini, A.H., Krishnamurthy, S., Friedrich, D., Brandani, S., Sarkisov, L., From crystal to adsorption column: challenges in multiscale computational screening of materials for adsorption separation processes. Ind. Eng. Chem. Res. 57 (2018), 15491–15511, 10.1021/acs.iecr.8b03065.
Hu, X., Mangano, E., Friedrich, D., Ahn, H., Brandani, S., Diffusion mechanism of CO2 in 13X zeolite beads. Adsorption 20 (2014), 121–135, 10.1007/s10450-013-9554-z.
Dixon, A.G., Correlations for wall and particle shape effects on fixed bed bulk voidage. Can. J. Chem. Eng. 66 (1988), 705–708, 10.1002/cjce.5450660501.
Pushnov, A.S., Calculation of average bed porosity. Chem. Pet. Eng. 42 (2006), 14–17, 10.1007/s10556-006-0045-x.
Gibson, J.A.A., Mangano, E., Shiko, E., Greenaway, A.G., Gromov, A.V., Lozinska, M.M., Friedrich, D., Campbell, E.E.B., Wright, P.A., Brandani, S., Adsorption materials and processes for carbon capture from gas-fired power plants: AMPGas. Ind. Eng. Chem. Res. 55 (2016), 3840–3851, 10.1021/acs.iecr.5b05015.
Webley, P.A., Qader, A., Ntiamoah, A., Ling, J., Xiao, P., Zhai, Y., A new multi-bed vacuum swing adsorption cycle for CO2 capture from flue gas streams. Energy Procedia 114 (2017), 2467–2480, 10.1016/j.egypro.2017.03.1398.
Jiang, L., Fox, V.G., Biegler, L.T., Simulation and optimal design of multiple-bed pressure swing adsorption systems. AIChE J. 50 (2004), 2904–2917, 10.1002/aic.10223.
Langer, G., Roethe, A., Roethe, K.P., Gelbin, D., Heat and mass transfer in packed beds-III. Axial mass dispersion. Int. J. Heat Mass Transf. 21 (1978), 751–759, 10.1016/0017-9310(78)90037-6.
Sircar, S., Hufton, J.R., Why does the linear driving force model for adsorption kinetics work?. Adsorption 6 (2000), 137–147, 10.1023/A:1008965317983.
RalphT. Yang, Gas Separation by Adsorption Processes, Elsevier, 1987. https://doi.org/10.1016/C2013-0-04269-7.
Kaviany, M., Kanury, A., Principles of heat transfer. Appl. Mech. Rev. 55 (2002), B100–B102, 10.1115/1.1497490.
F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer, (1996) 890. https://doi.org/10.1016/j.applthermaleng.2011.03.022.
Shafeeyan, M.S., Wan Daud, W.M.A., Shamiri, A., A review of mathematical modeling of fixed-bed columns for carbon dioxide adsorption. Chem. Eng. Res. Des. 92 (2014), 961–988, 10.1016/j.cherd.2013.08.018.
Soave, G., Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Sci. 27 (1972), 1197–1203, 10.1016/0009-2509(72)80096-4.
Brokaw, R.S., Approximate Formulas for the Viscosity and Thermal Conductivity of Gas Mixtures. II, J Chem Phys 42 (1965), 1140–1146, 10.1063/1.1696093.
Wilke, C.R., A Viscosity Equation for Gas Mixtures. J. Chem. Phys. 18 (1950), 517–519, 10.1063/1.1747673.
Mason, E.A., Saxena, S.C., Approximate formula for the thermal conductivity of gas mixtures. Phys. Fluids 1 (1958), 361–369, 10.1063/1.1724352.
B.E. Poling, J.M. Prausnitz, J.P. O'Connell, The properties of gases and liquids, Fifth Edit, McGraw-Hill, 2001. https://pubs.aip.org/physicstoday/article/12/4/38/895367/The-Properties-of-Gases-and-Liquids.
G. Béasse, C. Bourhy-Weber, S. Daeden, L. Granados, F. Lockwood, P. Moreschini, M. Rivière, Callide Oxyfuel Project Callide Oxyfuel Project Results from the CPU, Ponferrada, 2013.
Lockwood, T., Developments in oxyfuel combustion of coal. IEA Clean Coal Centre, 2014.
Costa, A., Coppitters, D., Dubois, L., Contino, F., Thomas, D., De Weireld, G., Energy, exergy, economic and environmental (4E) analysis of a cryogenic carbon purification unit with membrane for oxyfuel cement plant flue gas. Appl. Energy, 357, 2024, 122431, 10.1016/j.apenergy.2023.122431.
Peng, D.-Y., Robinson, D.B., A New Two-Constant Equation of State. Ind. Eng. Chem. Fundam. 15 (1976), 59–64, 10.1021/i160057a011.
Lasala, S., Chiesa, P., Privat, R., Jaubert, J.N., VLE properties of CO2 – Based binary systems containing N2, O2 and Ar: Experimental measurements and modelling results with advanced cubic equations of state. Fluid Phase Equilib. 428 (2016), 18–31, 10.1016/J.FLUID.2016.05.015.
M.W. Stanley, Selection and Design, Butterwoths Series in Chemical Engineering, Chemical Process Equipment, 1990.
Xin, Y., Zhang, Y., Xue, P., Wang, K., Adu, E., Tontiwachwuthikul, P., The optimization and thermodynamic and economic estimation analysis for CO2 compression-liquefaction process of CCUS system using LNG cold energy. Energy, 236, 2021, 121376, 10.1016/j.energy.2021.121376.
Maruyama, R.T., Pai, K.N., Subraveti, S.G., Rajendran, A., Improving the performance of vacuum swing adsorption based CO2 capture under reduced recovery requirements. Int. J. Greenhouse Gas Control, 93, 2020, 10.1016/j.ijggc.2019.102902.
Turton, R., Shaeiwitz, J.A., Bhattacharyya, D., Whiting, W.B., Analysis, Synthesis, and Design of Chemical Processes. 2018, Pearson Education Inc.
C. Maxwell, Cost Indices, (2022). https://www.toweringskills.com/financial-analysis/cost-indices/ (accessed August 30, 2022).
Linde, Aluminium plate-fin heat exchangers, n.d.
Subraveti, S.G., Roussanaly, S., Anantharaman, R., Riboldi, L., Rajendran, A., Techno-economic assessment of optimised vacuum swing adsorption for post-combustion CO2 capture from steam-methane reformer flue gas. Sep. Purif. Technol., 256, 2021, 10.1016/j.seppur.2020.117832.
Chauvy, R., Dubois, L., Lybaert, P., Thomas, D., De Weireld, G., Production of synthetic natural gas from industrial carbon dioxide. Appl. Energy, 260, 2020, 114249, 10.1016/J.APENERGY.2019.114249.
Da Hsiao, Y., Chang, C.T., Progressive learning for surrogate modeling of amine scrubbing CO2 capture processes. Chem. Eng. Res. Des. 194 (2023), 653–665, 10.1016/j.cherd.2023.05.016.
Beck, J., Friedrich, D., Brandani, S., Fraga, E.S., Multi-objective optimisation using surrogate models for the design of VPSA systems. Comput. Chem. Eng. 82 (2015), 318–329, 10.1016/j.compchemeng.2015.07.009.
W. Chung, J. Kim, J.H. Lee, First-principles based surrogate modeling of pressure swing adsorption processes for CO2 capture, in: IFAC-PapersOnLine, Elsevier B.V., 2022: pp. 310–315. https://doi.org/10.1016/j.ifacol.2022.07.462.
Forrester, A.I.J., Sóbester, A., Keane, A.J., Engineering design via surrogate modelling. Wiley, 2008, 10.1002/9780470770801.
Kudela, J., Matousek, R., Recent advances and applications of surrogate models for finite element method computations: a review. Soft. Comput. 26 (2022), 13709–13733, 10.1007/s00500-022-07362-8.
Constructing a Surrogate, in: Engineering Design via Surrogate Modelling, John Wiley & Sons, Ltd, Chichester, UK, 2008: pp. 33–76. https://doi.org/10.1002/9780470770801.ch2.
Jin, R., Chen, W., Sudjianto, A., An efficient algorithm for constructing optimal design of computer experiments. J Stat Plan Inference 134 (2005), 268–287, 10.1016/j.jspi.2004.02.014.
P. Saves, R. Lafage, N. Bartoli, Y. Diouane, J. Bussemaker, T. Lefebvre, J.T. Hwang, J. Morlier, J.R.R.A. Martins, SMT 2.0: A Surrogate Modeling Toolbox with a focus on Hierarchical and Mixed Variables Gaussian Processes, (2023) 1–37. http://arxiv.org/abs/2305.13998.
Spiller, E.T., Bayarri, M.J., Berger, J.O., Calder, E.S., Patra, A.K., Pitman, E.B., Wolpert, R.L., Automating Emulator Construction for Geophysical Hazard Maps. SIAM/ASA J. Uncertainty Quantification 2 (2014), 126–152, 10.1137/120899285.
I.M. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, 55 (2001) 271–280.
Iwanaga, T., Usher, W., Herman, J., Toward SALib 2.0: Advancing the accessibility and interpretability of global sensitivity analyses. Socio-Environ. Syst. Modelling, 4, 2022, 18155, 10.18174/sesmo.18155.
Kucherenko, S., Klymenko, O.V., Shah, N., Sobol’ indices for problems defined in non-rectangular domains. Reliab. Eng. Syst. Saf. 167 (2017), 218–231, 10.1016/j.ress.2017.06.001.
Seada, H., Deb, K., A unified evolutionary optimization procedure for single, multiple, and many objectives. IEEE Trans. Evol. Comput. 20 (2016), 358–369, 10.1109/TEVC.2015.2459718.
Blank, J., Deb, K., Pymoo: multi-objective optimization in Python. IEEE Access 8 (2020), 89497–89509, 10.1109/ACCESS.2020.2990567.
EMBER, Carbon Price Tracker, (2023). https://ember-climate.org/data/data-tools/carbon-price-viewer/ (accessed March 13, 2023).