Agro-ecosystem; Bee; Climate; Morocco; Phylogenetic distance; Ecology; Animal Science and Zoology; Agronomy and Crop Science
Abstract :
[en] Global food security is heavily reliant on crop pollination. However, evidence on pollinator decline has been reported in all continents. Globally affordable conservation strategies need to be developed, as high-cost measures like European agri-environment schemes are not scalable in all countries. Here, we test, if a low-cost conservation approach named “Farming with Alternative Pollinators” (FAP) can benefit wild pollinator abundance and richness in agro-ecosystems and in crops, through establishment of marketable habitat enhancement plants (MHEP). The study was carried out in four Moroccan agro-climatic regions, during two years, using 6 main crops (pumpkin, zucchini, faba bean, tomato, eggplant and apple) and 201 sites. Additionally, we investigated how crop type, crop-MHEP composition (i.e. phylogenetic distances among crop and MHEP) and local climate can drive the success of the approach in comparison to monocultural fields. Based on 7097 recorded specimens, our results show that the wild pollinators of the entire FAP fields (i.e. 75% main crop and 25% MHEP) were significantly more abundant and species-rich than those of control fields (i.e. 100% main crop). Considering the main crop wild pollinators, FAP did not display any significant effect either on wild pollinator abundance or on pollinator richness. The mean phylogenetic distance between the main crop and MHEP, and climatic variables were not correlated with increase in wild pollinator abundance and richness in FAP fields. The crop type was found to influence the effect of the FAP approach. Our study provides strong evidence that FAP constitutes a relevant method for wild pollinator conservation in agro-ecosystems. Further research on additional environmental factors is necessary to outline the circumstances under which the FAP approach can positively affect wild pollinator communities.
Disciplines :
Entomology & pest control
Author, co-author :
Sentil, Ahlam ; Université de Mons - UMONS > Faculté des Sciences > Service de Zoologie ; International Center of Agricultural Research in the Dry Areas, Rabat, Morocco
Lhomme, Patrick ; Université de Mons - UMONS > Faculté des Sciences > Service de Zoologie ; International Center of Agricultural Research in the Dry Areas, Rabat, Morocco
Reverte saiz, Sara ; Université de Mons - UMONS > Faculté des Sciences > Service de Zoologie
El abdouni, Insafe ; Université de Mons - UMONS > Faculté des Sciences > Service de Zoologie
Hamroud, Laila ; Université de Mons - UMONS > Faculté des Sciences > Service de Zoologie ; International Center of Agricultural Research in the Dry Areas, Rabat, Morocco
Ihsane, Oumayma ; University of Mons, Research institute for Biosciences, Laboratory of Zoology, Mons, Belgium ; International Center of Agricultural Research in the Dry Areas, Rabat, Morocco
Bencharki, Youssef ; Université de Mons - UMONS > Faculté des Sciences > Service de Zoologie ; International Center of Agricultural Research in the Dry Areas, Rabat, Morocco
Rollin, Orianne ; Centre apicole de recherche et d'information, Louvain-la-Neuve, Belgium
Rasmont, Pierre ; Université de Mons - UMONS > Faculté des Sciences > Service de Zoologie
Smaili, Moulay Chrif; National Institute of Agricultural Research, Regional Center of Agricultural Research of Kenitra, Laboratory of Entomology, Kenitra, Morocco
Michez, Denis ; Université de Mons - UMONS > Faculté des Sciences > Service de Zoologie
Ssymank, Axel; German Federal Agency for Nature Conservation (Bundesamt für Naturschutz, BfN), Bonn, Germany
Christmann, Stefanie ; International Center of Agricultural Research in the Dry Areas, Rabat, Morocco
This study is mainly funded by The German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), within the International Climate Initiative (IKI). AS and LH received a PhD grant from ICARDA/IKI (Rabat) and UMons. IEA has been granted by ICARDA/IKI (Rabat) and ARES (Belgium), OI has been granted by ICARDA/IKI. DM and SR were supported by the Fonds National de la Recherche Scientifique (FNRS, Belgium)/FWO joint program \u201CEOS \u2013 Excellence of Science\u201D under the project \u201CCliPS: Climate change and its effects on Pollination Services\u201D (project 30947854).
Aizen, M.A., Aguiar, S., Biesmeijer, J.C., Garibaldi, L.A., Inouye, D.W., Jung, C., Martins, D.J., Medel, R., Morales, C.L., Ngo, H., Pauw, A., Paxton, R.J., Sáez, A., Seymour, C.L., Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. Glob. Change Biol. 25 (2019), 3516–3527, 10.1111/gcb.14736.
Albrecht, M., Kleijn, D., Williams, N.M., Tschumi, M., Blaauw, B.R., Bommarco, R., Campbell, A.J., Dainese, M., Drummond, F.A., Entling, M.H., Ganser, D., Arjen de Groot, G., Goulson, D., Grab, H., Hamilton, H., Herzog, F., Isaacs, R., Jacot, K., Jeanneret, P., Jonsson, M., Knop, E., Kremen, C., Landis, D.A., Loeb, G.M., Marini, L., McKerchar, M., Morandin, L., Pfister, S.C., Potts, S.G., Rundlöf, M., Sardiñas, H., Sciligo, A., Thies, C., Tscharntke, T., Venturini, E., Veromann, E., Vollhardt, I.M.G., Wäckers, F., Ward, K., Wilby, A., Woltz, M., Wratten, S., Sutter, L., The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecol. Lett. 23 (2020), 1488–1498, 10.1111/ele.13576.
Arena, M.V.N., Destéfani, F.C., da Silva, T.N., Mascotti, J.C., da, S., da Silva-Zacarin, E.C.M., Toppa, R.H., Challenges to the conservation of stingless bees in Atlantic Forest patches: old approaches, new applications. J. Insect Conserv. 22 (2018), 627–633, 10.1007/s10841-018-0090-8.
Bartomeus, I., Ascher, J.S., Gibbs, J., Danforth, B.N., Wagner, D.L., Hedtke, S.M., Winfree, R., Historical changes in northeastern US bee pollinators related to shared ecological traits. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 4656–4660, 10.1073/pnas.1218503110.
Batáry, P., Dicks, L.V., Kleijn, D., Sutherland, W.J., The role of agri-environment schemes in conservation and environmental management. Conserv. Biol. 29 (2015), 1006–1016, 10.1111/cobi.12536.
Bates, D., Mächler, M., Bolker, B.M., Walker, S.C., lme4: linear mixed-effects models. R. Package Version, 1(1), 2020, 21.
Beasley, T.M., Erickson, S., Allison, D.B., Rank-based inverse normal transformations are increasingly used, but are they merited?. Behav. Genet. 39 (2009), 580–595, 10.1007/s10519-009-9281-0.
Bencharki, Y., Christmann, S., Lhomme, P., Ihsane, O., Sentil, A., El Abdouni, I., Hamroud, L., Rasmont, P., Michez, D., Farming with Alternative Pollinators ” approach supports diverse and abundant pollinator community in melon fields in a semi-arid landscape. Renew. Agric. Food Syst., 2022, 1–34, 10.1017/S1742170522000394 (Published).
Blaauw, B.R., Isaacs, R., Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. J. Appl. Ecol., 2014, 10.1111/1365-2664.12257.
Blaauw, B.R., Isaacs, R., Larger patches of diverse floral resources increase insect pollinator density, diversity, and their pollination of native wildflowers. Basic Appl. Ecol. 15 (2014), 701–711, 10.1016/j.baae.2014.10.001.
Bommarco, R., Marini, L., Vaissière, B.E., Insect pollination enhances seed yield, quality, and market value in oilseed rape. Oecologia 169 (2012), 1025–1032, 10.1007/s00442-012-2271-6.
Borror, D.J., White E.R., 1991. “Les insectes de l′Amérique du Nord (au Nord du Mexique)”. Broquet.
Campbell, A.J., Wilby, A., Sutton, P., Wäckers, F.L., Do sown flower strips boost wild pollinator abundance and pollination services in a spring-flowering crop? A case study from UK cider apple orchards. Agric. Ecosyst. Environ. 239 (2017), 20–29, 10.1016/j.agee.2017.01.005.
Christmann, S., Pollinator protection strategies must be feasible for all nations. Nat. Ecol. Evol. 4 (2020), 896–897, 10.1038/s41559-020-1210-x.
Christmann, S., Aw-Hassan, A.A., Farming with alternative pollinators (FAP)-An overlooked win-win-strategy for climate change adaptation. Agric. Ecosyst. Environ. 161 (2012), 161–164, 10.1016/j.agee.2012.07.030.
Christmann, S., Aw-Hassan, A., Rajabov, T., Khamraev, A.S., Tsivelikas, A., Farming with alternative pollinators increases yields and incomes of cucumber and sour cherry. Agron. Sustain. Dev., 37, 2017, 10.1007/s13593-017-0433-y.
Christmann, S., Aw-hassan, A., Güler, Y., Cumhur, H., Bernard, M., Smaili, M.C., Tsivelikas, A., Two enabling factors for farmer-driven pollinator protection in low- and middle-income countries. Int. J. Agric. Sustain 0 (2021), 1–14, 10.1080/14735903.2021.1916254.
Christmann, S., Bencharki, Y., Anougmar, S., Rasmont, P., Smaili, M.C., Tsivelikas, A., Aw‑Hassan, A., Farming with Alternative Pollinators benefits pollinators, natural enemies, and yields, and offers transformative change to agriculture. Sci. Rep., 10(1), 2021, 10.1038/s41598-021-97695-5.
Cirtwill, A.R., Dalla Riva, G.V., Baker, N.J., Ohlsson, M., Norström, I., Wohlfarth, I.M., Thia, J.A., Stouffer, D.B., Related plants tend to share pollinators and herbivores, but strength of phylogenetic signal varies among plant families. N. Phytol. 226 (2020), 909–920, 10.1111/nph.16420.
Classen, A., Peters, M.K., Kindeketa, W.J., Appelhans, T., Eardley, C.D., Gikungu, M.W., Hemp, A., Nauss, T., Steffan-Dewenter, I., Temperature versus resource constraints: Which factors determine bee diversity on Mount Kilimanjaro, Tanzania?. Glob. Ecol. Biogeogr. 24 (2015), 642–652, 10.1111/geb.12286.
Cooley, H., Vallejo-Marín, M., Buzz-Pollinated Crops: A Global Review and Meta-analysis of the Effects of Supplemental Bee Pollination in Tomato. J. Econ. Entomol. 114 (2021), 505–519, 10.1093/jee/toab009.
Davis, C.C., Willis, C.G., Primack, R.B., Miller-Rushing, A.J., The importance of phylogeny to the study of phenological response to global climate change. Philos. Trans. R. Soc. B Biol. Sci. 365 (2010), 3202–3213, 10.1098/rstb.2010.0130.
Devictor, V., Mouillot, D., Meynard, C., Jiguet, F., Thuiller, W., Mouquet, N., Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecol. Lett. 13 (2010), 1030–1040.
Dicks, L.V., Breeze, T.D., Ngo, H.T., Senapathi, D., An, J., Aizen, M.A., Basu, P., Buchori, D., Galetto, L., Garibaldi, L.A., Gemmill-Herren, B., Howlett, B.G., Imperatriz-Fonseca, V.L., Johnson, S.D., Kovács-Hostyánszki, A., Kwon, J., Lattorff, G., Lungharwo, H.M., Seymour, T., Vanbergen, C.L., Potts S.G, A.J., Potts, S.G., A global-scale expert assessment of drivers and risks associated with pollinator decline. Nat. Ecol. Evol. 5 (2021), 1453–1461, 10.1038/s41559-021-01534-9.
Duchenne, F., Thébault, E., Michez, D., Gérard, M., Devaux, C., Rasmont, P., Vereecken, N.J., Fontaine, C., Long-term effects of global change on occupancy and flight period of wild bees in Belgium. Glob. Chang. Biol. 26 (2020), 6753–6766, 10.1111/gcb.15379.
Eckerter, P.W., Albrecht, M., Bertrand, C., Gobet, E., Herzog, F., Pfister, S.C., Tinner, W., Entling, M.H., Effects of temporal floral resource availability and non-crop habitats on broad bean pollination. Landsc. Ecol. 37:6 (2022), 1573–1586, 10.1007/s10980-022-01448-2.
Elliott, S.E., Subalpine Bumble Bee Foraging Distances and Densities in Relation to Flower Availability. Environ. Entomol. 38 (2009), 748–756, 10.1603/022.038.0327.
Fick, E.S., Hijmans, J.R., Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37 (2017), 4302–4315, 10.1002/joc.5086.
Fontaine, C., Thébault, E., Comparing the conservatism of ecological interactions in plant–pollinator and plant–herbivore networks. Popul. Ecol. 57 (2015), 29–36, 10.1007/s10144-014-0473-y.
Forest, F., Grenyer, R., Rouget, M., Davies, T.J., Cowling, R.M., Faith, D.P., Balmford, A., Manning, J.C., Procheş, Ş., Van Der Bank, M., Reeves, G., Hedderson, T.A.J., Savolainen, V., Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445 (2007), 757–760, 10.1038/nature05587.
Fornoff, F., Klein, A.M., Hartig, F., Benadi, G., Venjakob, C., Schaefer, H.M., Ebeling, A., Functional flower traits and their diversity drive pollinator visitation. Oikos 126 (2017), 1020–1030, 10.1111/oik.03869.
Fountain, M., T., Impacts of Wildflower Interventions on Beneficial Insects in Fruit Crops: A Review. Insects, 13, 2022, 10.3390/insects13030304.
Fox, J., Weisberg, S., Price, B., Adler, D., Bates, D., Baud-bovy, G., Bolker, B., Ellison, S., Graves, S., Krivitsky, P., Laboissiere, R., Maechler, M., Monette, G., Murdoch, D., Ogle, D., Ripley, B., Venables, W., Walker, S., Winsemius, D., 2020. Package ‘car.’.
Ganser, D., Albrecht, M., Knop, E., Wildflower strips enhance wild bee reproductive success. J. Appl. Ecol. 58 (2021), 486–495, 10.1111/1365-2664.13778.
Garibaldi, L.A., Steffan-dewenter, I., Winfree, R., Aizen, M.A., Bommarco, R., Cunningham, S.A., Kremen, C., Carvalheiro, L.G., Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science 80-:339 (2013), 1608–1611.
Gary, C., Jolain, N.M., Fanny, P., Laurence, C., Ariane, G., 2014. Mise en place d ’une politique publique de réduction des usages de pesticides: le plan Ecophyto Contexte.
Hartig, F., 2019. DHARMa: residual diagnostics for hierarchical (multi level/mixed) regression models. R package version 0.2.4. 〈https://CRAN.R-project.org/package=DHARMa〉 (accessed 20 November 2023).
Hedges, S.B., Dudley, J., Kumar, S., TimeTree: A public knowledge-base of divergence times among organisms. Bioinformatics 22 (2006), 2971–2972, 10.1093/bioinformatics/btl505.
Holzschuh, A., Dainese, M., Gonzalez-Varo, P., Mudri-Stojnic, J., Riedinger, S., Rundlof, V., Scheper, M., B, J., Wickens, J., Wickens, J., Bommarco, V., Kleijn, R., Potts, D., P. M, S.G., Roberts, S., Smith, G., Vilà, H., Vujic, M., Steffan-Dewenter, I, A., Mass-flowering crops dilute pollinator abundance in agricultural landscapes across Europe. Ecol. Lett. 19 (2016), 1228–1236, 10.1111/ele.12657".
Hutchinson, M.C., Cagua, E.F., Stouffer, D.B., Cophylogenetic signal is detectable in pollination interactions across ecological scales. Ecology 98 (2017), 2640–2652, 10.1002/ecy.1955.
Isbell, F., Adler, P.R., Eisenhauer, N., Fornara, D., Kimmel, K., Kremen, C., Letourneau, D.K., Liebman, M., Polley, H.W., Quijas, S., Scherer-Lorenzen, M., Benefits of increasing plant diversity in sustainable agroecosystems. J. Ecol. 105 (2017), 871–879, 10.1111/1365-2745.12789.
Janz, N., Nylin, S., Butterflies and plants: A phylogenetic study. Evol. (N. Y). 52 (1998), 486–502, 10.1111/j.1558-5646.1998.tb01648.x.
Kang, H., Jang, J., Flowering patterns among angiosperm species in Korea: Diversity and constraints. J. Plant Biol. 47 (2004), 348–355, 10.1007/BF03030550.
Kennedy, C.M., Lonsdorf, E., Neel, M.C., Williams, N.M., Ricketts, T.H., Winfree, R., Bommarco, R., Brittain, C., Burley, A.L., Cariveau, D., Carvalheiro, L.G., Chacoff, N.P., Cunningham, S.A., Danforth, B.N., Dudenhöffer, J.H., Elle, E., Gaines, H.R., Garibaldi, L.A., Gratton, C., Holzschuh, A., Isaacs, R., Javorek, S.K., Jha, S., Klein, A.M., Krewenka, K., Mandelik, Y., Mayfield, M.M., Morandin, L., Neame, L.A., Otieno, M., Park, M., Potts, S.G., Rundlöf, M., Saez, A., Steffan-Dewenter, I., Taki, H., Viana, B.F., Westphal, C., Wilson, J.K., Greenleaf, S.S., Kremen, C., A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16 (2013), 584–599, 10.1111/ele.12082.
Kleijn, D., Sutherland, W.J., How effective are European agri-environment schemes in conserving and promoting biodiversity?. J. Appl. Ecol. 40 (2003), 947–969, 10.1111/j.1365-2664.2003.00868.x.
Klein, A.M., Vaissière, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., Tscharntke, T., Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274 (2007), 303–313, 10.1098/rspb.2006.3721.
Lander, T.A., Bebber, D.P., Choy, C.T.L., Harris, S.A., Boshier, D.H., The circe principle explains how resource-rich land can waylay pollinators in fragmented landscapes. Curr. Biol. 21 (2011), 1302–1307, 10.1016/j.cub.2011.06.045.
Lawson, D.A., Rands, S.A., The effects of rainfall on plant–pollinator interactions. Arthropod Plant. Interact. 13 (2019), 561–569, 10.1007/s11829-019-09686-z.
Losos, J.B., Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 11 (2008), 995–1003, 10.1111/j.1461-0248.2008.01229.x.
Martinet, B., Dellicour, S., Ghisbain, G., Przybyla, K., Zambra, E., Lecocq, T., Boustani, M., Baghirov, R., Michez, D., Rasmont, P., Global effects of extreme temperatures on wild bumblebees. Conserv. Biol. 0 (2021), 1–12, 10.1111/cobi.13685.
Martinet, B., Zambra, E., Przybyla, K., Lecocq, T., Anselmo, A., Nonclercq, D., Rasmont, P., Michez, D., Hennebert, E., Mating under climate change: Impact of simulated heatwaves on the reproduction of model pollinators. Funct. Ecol., 2021, 1–14, 10.1111/1365-2435.13738.
Meena, N.K., Singh, B., Kant, K., Meena, R.D., Solanki, R.K., Role of insect pollinators in pollination of seed spices-A review. Int. J. Seed Spices 5 (2015), 1–17.
Michez, D., Rasmont, P., Terzo, M., Vereecken, N.J., 2019. Bees of Europe. NAP Editions.
Moerman, R., Vanderplanck, M., Fournier, D., Jacquemart, A.L., Michez, D., Pollen nutrients better explain bumblebee colony development than pollen diversity. Insect Conserv. Divers. 10 (2017), 171–179, 10.1111/icad.12213.
Morandin, L.A., Long, R.F., Kremen, C., Pest control and pollination cost-benefit analysis of hedgerow restoration in a simplified agricultural landscape. J. Econ. Entomol. 109 (2016), 1020–1027, 10.1093/jee/tow086.
Nicholls, C.I., Altieri, M.A., Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron. Sustain. Dev. 33 (2013), 257–274, 10.1007/s13593-012-0092-y.
Nicholson, C.C., Ricketts, T.H., Koh, I., Smith, H.G., Lonsdorf, E.V., Olsson, O., Flowering resources distract pollinators from crops: Model predictions from landscape simulations. J. Appl. Ecol. 56 (2019), 618–628, 10.1111/1365-2664.13333.
Nieto, A., Roberts, S.P.M., Kemp, J., Rasmont, P., Kuhlmann, M., García Criado, M., Biesmeijer, J.C., Bogusch, P., Dathe, H.H., De la Rúa, P., De Meulemeester, T., Dehon, M., Dewulf, A., Ortiz-Sánchez, F.J., Lhomme, P., Pauly, A., Potts, S.G., Praz, C., Window, Q., Michez, D, J., Eur. Red. List Bees, IUCN Glob. Species Program., 2014, 10.2779/77003.
Patiny, S., Rasmont, P., Michez, D., A survey and review of the status of wild bees in the West-Palaearctic region. Apidologie 40 (2009), 313–331, 10.1051/apido/2009028.
Phillips, B.B., Gaston, K.J., Bullock, J.M., Osborne, J.L., Road verges support pollinators in agricultural landscapes, but are diminished by heavy traffic and summer cutting. J. Appl. Ecol. 56 (2019), 2316–2327, 10.1111/1365-2664.13470.
Pistón, N., Armas, C., Schöb, C., Macek, P., Pugnaire, F.I., Phylogenetic distance among beneficiary species in a cushion plant species explains interaction outcome. Oikos 124 (2015), 1354–1359, 10.1111/oik.01979.
Popic, T.J., Davila, Y.C., Wardle, G.M., Evaluation of Common Methods for Sampling Invertebrate Pollinator Assemblages: Net Sampling Out-Perform Pan Traps. PLoS One, 8, 2013, 10.1371/journal.pone.0066665.
Potts, S.G., Imperatriz-Fonseca, V., Ngo, H.T., Aizen, M.A., Biesmeijer, J.C., Breeze, T.D., Dicks, L.V., Garibaldi, L.A., Hill, R., Settele, J., Vanbergen, A.J., Safeguarding pollinators and their values to human well-being. Nature 540 (2016), 220–229, 10.1038/nature20588.
Prosekov, A.Y., Ivanova, S.A., Food security: The challenge of the present. Geoforum 91 (2018), 73–77, 10.1016/j.geoforum.2018.02.030.
Rasmont, P., Franzén, M., Lecocq, T., Harpke, A., Roberts, S.P.M., Biesmeijer, K., Castro, L., Cederberg, B., Dvorák, L., Fitzpatrick, Ú., Gonseth, Y., Haubruge, E., Mahé, G., Manino, A., Michez, D., Neumayer, J., Ødegaard, F., Paukkunen, J., Pawlikowski, T., Potts, S.G., Reemer, M., Settele, J., Straka, J., Schweiger O., 2015. Climatic Risk and Distribution Atlas of European Bumblebees, Biorisk, 10: 1-236.
Ribeiro, E.M.S., Santos, B.A., Arroyo-Rodríguez, V., Tabarelli, M., Souza, G., Leal, I.R., Phylogenetic impoverishment of plant communities following chronic human disturbances in the Brazilian Caatinga. Ecology 97 (2016), 1583–1592, 10.1890/15-1122.1.
Rissler, L.J., Hijmans, R.J., Graham, C.H., Moritz, C., Wake, D.B., Phylogeographic lineages and species comparisons in conservation analyses: A case study of California herpetofauna. Am. Nat. 167 (2006), 655–666, 10.1086/503332.
Roger, N., Moerman, R., Carvalheiro, L.G., Aguirre-Guitiérrez, J., Jacquemart, A.L., Kleijn, D., Lognay, G., Moquet, L., Quinet, M., Rasmont, P., Richel, A., Vanderplanck, M., Michez, D., Impact of pollen resources drift on common bumblebees in NW Europe. Glob. Chang. Biol. 23 (2017), 68–76, 10.1111/gcb.13373.
Rundlöf, M., Lundin, O., Bommarco, R., Annual flower strips support pollinators and potentially enhance red clover seed yield. Ecol. Evol. 8 (2018), 7974–7985, 10.1002/ece3.4330.
Sánchez-Bayo, F., Wyckhuys, K.A.G., Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232 (2019), 8–27, 10.1016/j.biocon.2019.01.020.
Sardiñas, H.S., Kremen, C., Pollination services from field-scale agricultural diversification may be context-dependent. Agric. Ecosyst. Environ. 207 (2015), 17–25, 10.1016/j.agee.2015.03.020.
Sardiñas, H.S., Tom, K., Ponisio, L.C., Rominger, A., Kremen, C., Sunflower (Helianthus annuus) pollination in California's Central Valley is limited by native bee nest site location. Ecol. Appl. 26 (2016), 438–447, 10.1890/15-0033.
Scheper, J., Holzschuh, A., Kuussaari, M., Potts, S.G., Rundlöf, M., Smith, H.G., Kleijn, D., Environmental factors driving the effectiveness of European agri-environmental measures in mitigating pollinator loss - a meta-analysis. Ecol. Lett. 16 (2013), 912–920, 10.1111/ele.12128.
Scheper, J., Bommarco, R., Holzschuh, A., Potts, S.G., Riedinger, V., Roberts, S.P.M., Rundlöf, M., Smith, H.G., Steffan-Dewenter, I., Wickens, J.B., Wickens, V.J., Kleijn, D., Local and landscape-level floral resources explain effects of wildflower strips on wild bees across four European countries. J. Appl. Ecol. 52 (2015), 1165–1175, 10.1111/1365-2664.12479.
Sentil, A., Lhomme, P., Michez, D., Reverté, S., Rasmont, P., Christmann, S., Farming with Alternative Pollinators” approach increases pollinator abundance and diversity in faba bean fields. J. Insect Conserv. 26 (2022), 401–414, 10.1007/s10841-021-00351-6.
Sentil, A., Reverté, S., Lhomme, P., Bencharki, Y., Rasmont, P., Christmann, S., Michez, D., Wild vegetation and ‘farming with alternative pollinators’ approach support pollinator diversity in farmland. J. Appl. Entomol. 146 (2022), 1155–1168, 10.1111/jen.13060.
Sentil, A., Lhomme, P., El Abdouni, I., Hamroud, L., Ihsane, O., Bencharki, Y., Rasmont, P., Michez, D., Christmann, S., (2023). Pollinator data [Data set]. Zenodo. 〈https://doi.org/10.5281/zenodo.7769167〉.
Shakeel, M., Ali, Hussain, Ahmad, S., Said, F., Ali, K., Amjad, M., Ishtiaq, S., Islam, W., Ghramh, H.A., Javed, M., Ali, Habib, Saudi Journal of Biological Sciences Insect pollinators diversity and abundance in Eruca sativa Mill. ( Arugula) and Brassica rapa L. ( Field mustard) crops. Saudi J. Biol. Sci. 26 (2019), 1704–1709, 10.1016/j.sjbs.2018.08.012.
Sharma, K., Meena, N.K., Diversity of insect pollinators in coriander ( Coriandrum sativum Linn.) VAR. ACR-1 under Semi-Arid region of Rajasthan. J. Pharmacogn. Phytochem. 8 (2019), 198–201.
de Sousa Costa, R.W., da Silva, G.L.F., de Carvalho Filho, A.O., Silva, A.C., de Paiva, A.C., Gattass, M., Classification of malignant and benign lung nodules using taxonomic diversity index and phylogenetic distance. Med. Biol. Eng. Comput. 56 (2018), 2125–2136, 10.1007/s11517-018-1841-0.
Thom, M.D., Eberle, C.A., Forcella, F., Gesch, R., Weyers, S., Specialty oilseed crops provide an abundant source of pollen for pollinators and beneficial insects. J. Appl. Entomol. 142 (2018), 211–222, 10.1111/jen.12401.
Tscharntke, T., Klein, A.M., Kruess, A., Steffan-Dewenter, I., Thies, C., Landscape perspectives on agricultural intensification and biodiversity - Ecosystem service management. Ecol. Lett. 8 (2005), 857–874, 10.1111/j.1461-0248.2005.00782.x.
Vamosi, J.C., Moray, C.M., Garcha, N.K., Chamberlain, S.A., Mooers, A., Pollinators visit related plant species across 29 plant-pollinator networks. Ecol. Evol. 4 (2014), 2303–2315, 10.1002/ece3.1051.
Vastola, A., 2015. The Sustainability of Agro-Food and Natural Resource Systems in the Mediterranean Basin. https://doi.org/DOI 10.1007/978-3-319-16357-4.
Venturini, E.M., Drummond, F.A., Hoshide, A.K., Dibble, A.C., Stack, L.B., Pollination reservoirs for wild bee habitat enhancement in cropping systems: a review. Agroecol. Sustain. Food Syst. 41 (2017), 101–142, 10.1080/21683565.2016.1258377.
Warzecha, D., Diekötter, T., Wolters, V., Jauker, F., Attractiveness of wildflower mixtures for wild bees and hoverflies depends on some key plant species. Insect Conserv. Divers. 11 (2018), 32–41, 10.1111/icad.12264.
Weekers, T., Marshall, L., Leclercq, N., Wood, T.J., Cejas, D., Drepper, B., Garratt, M., Hutchinson, L., Roberts, S., Bosch, J., Roquer-Beni, L., Lhomme, P., Michez, D., Molenberg, J.M., Smagghe, G., Vandamme, P., Vereecken, N.J., Ecological, environmental, and management data indicate apple production is driven by wild bee diversity and management practices. Ecol. Indic., 139, 2022, 108880, 10.1016/j.ecolind.2022.108880.
Williams, I.H., The pollination of lupins. Bee World 68 (1987), 10–16, 10.1080/0005772X.1987.11098904.
Williams, N.M., Minckley, R.L., Silveira, F.A., Variation in native bee faunas and its implications for detecting community changes. Ecol. Soc., 5, 2001, 10.5751/es-00259-050107.
Wratten, S.D., Bowie, M.H., Hickman, J.M., Evans, A.M., Sedcole, J.R., Tylianakis, J.M., Field boundaries as barriers to movement of hover flies (Diptera: Syrphidae) in cultivated land. Oecologia 134 (2003), 605–611, 10.1007/s00442-002-1128-9.
Zamorano, J., Bartomeus, I., Grez, A.A., Garibaldi, L.A., Field margin floral enhancements increase pollinator diversity at the field edge but show no consistent spillover into the crop field: a meta-analysis. Insect Conserv. Divers., 2020, icad.12454, 10.1111/icad.12454.
Zattara, E.E., Aizen, M.A., Worldwide occurrence records suggest a global decline in bee species richness. One Earth 4 (2021), 114–123, 10.1016/j.oneear.2020.12.005.
Zheng, Y.L., Burns, J.H., Liao, Z.Y., Li, Y. ping, Yang, J., Chen, Y. jun, Zhang, J. lin, Zheng, Y. guo, Species composition, functional and phylogenetic distances correlate with success of invasive Chromolaena odorata in an experimental test. Ecol. Lett. 21 (2018), 1211–1220, 10.1111/ele.13090.
Zuur, A.F., Ieno, E.N., Elphick, C.S., A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1 (2010), 3–14, 10.1111/j.2041-210x.2009.00001.