Aluminium; Bacteria; Metal resistance; Proteomics; Aluminum; Metals; Bacterial Proteins; Metals/metabolism; Bacterial Proteins/metabolism; Cupriavidus/metabolism; Biological functions; Biological pathways; Cupriavidus metallidurans; Domestic use; Industrial use; Metal cans; Metal resistances; Microbial life; Planktonic-cells; Cupriavidus; Environmental Engineering; Environmental Chemistry; Waste Management and Disposal; Pollution; Health, Toxicology and Mutagenesis
Abstract :
[en] Aluminium (Al) is one of the most popular materials for industrial and domestic use. Nevertheless, research has proven that this metal can be toxic to most organisms. This light metal has no known biological function and to date very few aluminium-specific biological pathways have been identified. In addition, information about the impact of this metal on microbial life is scarce. Here, we aimed to study the effect of aluminium on the metal-resistant soil bacterium Cupriavidus metallidurans CH34 in different growth modes, i.e. planktonic cells, adhered cells and mature biofilms. Our results indicated that despite a significant tolerance to aluminium (minimal inhibitory concentration of 6.25 mM Al₂(SO₄)₃.18H₂O), the exposure of C. metallidurans to a sub-inhibitory dose (0.78 mM) caused early oxidative stress and an increase in hydrolytic activity. Changes in the outer membrane surface of planktonic cells were observed, in addition to a rapid disruption of mature biofilms. On protein level, aluminium exposure increased the expression of proteins involved in metabolic activity such as pyruvate kinase, formate dehydrogenase and poly(3-hydroxybutyrate) polymerase, whereas proteins involved in chemotaxis, and the production and transport of iron scavenging siderophores were significantly downregulated.
Disciplines :
Microbiology
Author, co-author :
Abdeljelil, Nissem ; Université de Mons - UMONS > Faculté des Sciences > Service de Protéomie et Microbiologie
Ben Miloud Yahia, Najla; National Center for Nuclear Sciences and Technologies, Sidi Thabet, Tunisia
Landoulsi, Ahmed; Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
Chatti, Abdelwaheb; Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
Wattiez, Ruddy ; Université de Mons - UMONS > Faculté des Sciences > Service de Protéomie et Microbiologie
Gillan, David ; Université de Mons - UMONS > Faculté des Sciences > Service de Protéomie et Microbiologie
Van Houdt, Rob; Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium. Electronic address: rvhoudto@sckcen.be
Language :
English
Title :
Proteomic and morphological insights into the exposure of Cupriavidus metallidurans CH34 planktonic cells and biofilms to aluminium.
This work was supported by the Fund for Collective Fundamental Research ( FRFC ) grant to D.C.G ( CDR J.0071.21 ), the European Space Agency ( ESA-PRODEX ) and the Belgian Science Policy (Belspo) through the BIOFILMS project ( C4000129318 , C4000137308 ), and the Tunisian Ministry of Higher Education and Scientific Research .
Abdeljelil, N., Ben Miloud Yahia, N., Landoulsi, A., Chatti, A., Wattiez, R., Van Houdt, R., et al. Growth and biofilm formation of Cupriavidus metallidurans CH34 on different metallic and polymeric materials used in spaceflight applications. Biofouling 38:6 (2022), 643–655, 10.1080/08927014.2022.2106858.
Albarouki, E., Schafferer, L., Ye, F., von Wiren, N., Haas, H., Deising, H.B., Biotrophy-specific downregulation of siderophore biosynthesis in Colletotrichum graminicola is required for modulation of immune responses of maize. Mol Microbiol 92:2 (2014), 338–355, 10.1111/mmi.12561.
Baatout, S., De Boever, P., Mergeay, M., Physiological changes induced in four bacterial strains following oxidative stress. Prikl Biokhim Mikrobiol 42:4 (2006), 418–427, 10.1134/S0003683806040053.
Boeris, P.S., Agustin Mdel, R., Acevedo, D.F., Lucchesi, G.I., Biosorption of aluminum through the use of non-viable biomass of Pseudomonas putida. J Biotechnol 236 (2016), 57–63, 10.1016/j.jbiotec.2016.07.026.
Boeris, P.S., Liffourrena, A.S., Salvano, M.A., Lucchesi, G.I., Physiological role of phosphatidylcholine in the Pseudomonas putida A ATCC 12633 response to tetradecyltrimethylammonium bromide and aluminium. Lett Appl Microbiol 49:4 (2009), 491–496, 10.1111/j.1472-765X.2009.02699.x.
Booth, S.C., George, I.F., Zannoni, D., Cappelletti, M., Duggan, G.E., Ceri, H., et al. Effect of aluminium and copper on biofilm development of Pseudomonas pseudoalcaligenes KF707 and P. fluorescens as a function of different media compositions. Metallomics 5:6 (2013), 723–735, 10.1039/c3mt20240b.
Brickman, T.J., McIntosh, M.A., Overexpression and purification of ferric enterobactin esterase from Escherichia coli. Demonstration of enzymatic hydrolysis of enterobactin and its iron complex. J Biol Chem 267:17 (1992), 12350–12355, 10.1016/S0021-9258(19)49846-3.
Chenier, D., Beriault, R., Mailloux, R., Baquie, M., Abramia, G., Lemire, J., et al. Involvement of fumarase C and NADH oxidase in metabolic adaptation of Pseudomonas fluorescens cells evoked by aluminum and gallium toxicity. Appl Environ Microbiol 74:13 (2008), 3977–3984, 10.1128/aem.02702-07.
Cramm, R., Genomic view of energy metabolism in Ralstonia eutropha H16. J Mol Microbiol Biotechnol 16:1-2 (2009), 38–52, 10.1159/000142893.
Cui, X., Huo, M., Chen, C., Yu, Z., Zhou, C., Li, A., et al. Low concentrations of Al(III) accelerate the formation of biofilm: Multiple effects of hormesis and flocculation. Sci Total Environ 634 (2018), 516–524, 10.1016/j.scitotenv.2018.03.376.
Dhanarani, S., Viswanathan, E., Piruthiviraj, P., Arivalagan, P., Kaliannan, T., Comparative study on the biosorption of aluminum by free and immobilized cells of Bacillus safensis KTSMBNL 26 isolated from explosive contaminated soil. J Taiwan Inst Chem Eng 69 (2016), 61–67, 10.1016/j.jtice.2016.09.032.
Diels, L., Van Roy, S., Taghavi, S., Van Houdt, R., From industrial sites to environmental applications with Cupriavidus metallidurans. Antonie Van Leeuwenhoek 96:2 (2009), 247–258, 10.1007/s10482-009-9361-4.
Dzionek, A., Dzik, J., Wojcieszynska, D., Guzik, U., Fluorescein diacetate hydrolysis using the whole biofilm as a sensitive tool to evaluate the physiological state of immobilized bacterial cells. Catalysts, 8(10), 2018, 434, 10.3390/catal8100434.
Eick-Helmerich, K., Braun, V., Import of biopolymers into Escherichia coli: nucleotide sequences of the exbB and exbD genes are homologous to those of the tolQ and tolR genes, respectively. J Bacteriol 171:9 (1989), 5117–5126, 10.1128/jb.171.9.5117-5126.1989.
Exley, C., Aluminum in biological systems. Kretsinger, R.H., Uversky, V.N., Permyakov, E.A., (eds.) Encyclopedia of Metalloproteins, 2013, Springer New York, New York, NY, 33–34, 10.1007/978-1-4614-1533-6_105.
Formoso, E., Grande-Aztatzi, R., Lopez, X., Does phosphorylation increase the binding affinity of aluminum? A computational study on the aluminum interaction with serine and O-phosphoserine. J Inorg Biochem 192 (2019), 33–44, 10.1016/j.jinorgbio.2018.12.004.
Friedrich, C.G., Bowien, B., Friedrich, B., Formate and oxalate metabolism in Alcaligenes eutrophus. J Gen Microbiol 115:Nov (1979), 185–192, 10.1099/00221287-115-1-185.
Fringuelli, F., Pizzo, F., Vaccaro, L., AlCl3 as an efficient Lewis acid catalyst in water. Tetrahedron Lett 42:6 (2001), 1131–1133, 10.1016/S0040-4039(00)02164-X.
Gilis, A., Khan, M.A., Cornelis, P., Meyer, J.M., Mergeay, M., vanderLelie, D., Siderophore-mediated iron uptake in Alcaligenes eutrophus CH34 and identification of aleB encoding the ferric iron-alcaligin E receptor. J Bacteriol 178:18 (1996), 5499–5507.
Gillan, D.C., Metal resistance systems in cultivated bacteria: are they found in complex communities?. Curr Opin Biotechnol 38 (2016), 123–130, 10.1016/j.copbio.2016.01.012.
Guida, L., Saidi, Z., Hughes, M.N., Poole, R.K., Aluminium toxicity and binding to Escherichia coli. Arch Microbiol 156:6 (1991), 507–512, 10.1007/BF00245400.
Hamel, R., Appanna, V.D., Aluminum detoxification in Pseudomonas fluorescens is mediated by oxalate and phosphatidylethanolamine. Biochim Biophys Acta 1619:1 (2003), 70–76, 10.1016/s0304-4165(02)00444-0.
Harris, W.R., Berthon, G., Day, J.P., Exley, C., Flaten, T.P., Forbes, W.F., et al. Speciation of aluminum in biological systems. J Toxicol Environ Health 48:6 (1996), 543–568, 10.1080/009841096161069.
Hausmann, S., Gonzalez, D., Geiser, J., Valentini, M., The DEAD-box RNA helicase RhlE2 is a global regulator of Pseudomonas aeruginosa lifestyle and pathogenesis. Nucleic Acids Res 49:12 (2021), 6925–6940, 10.1093/nar/gkab503.
Hu, Y.H., Dang, W., Sun, L., A TonB-dependent outer membrane receptor of Pseudomonas fluorescens: virulence and vaccine potential. Arch Microbiol 194:9 (2012), 795–802, 10.1007/s00203-012-0812-3.
International Aluminium Institute, 2023. Statistics primary aluminium production. 〈https://international-aluminium.org/statistics/primary-aluminium-production/〉. (accessed December 2023).
Janssen, P.J., Van Houdt, R., Moors, H., Monsieurs, P., Morin, N., Michaux, A., et al. The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One, 5(5), 2010, e10433, 10.1371/journal.pone.0010433.
Jo, J., Jang, Y.S., Kim, K.Y., Kim, M.H., Kim, I.J., Chung, W.I., Isolation of ALU1-P gene encoding a protein with aluminum tolerance activity from Arthrobacter viscosus. Biochem Biophys Res Commun 239:3 (1997), 835–839, 10.1006/bbrc.1997.7567.
Kluczka, J., Zołotajkin, M., Ciba, J., Staroń, M., Assessment of aluminum bioavailability in alum sludge for agricultural utilization. Environ Monit Assess, 189(8), 2017, 422, 10.1007/s10661-017-6133-x.
Kwak, Y.H., Lee, D.S., Kim, H.B., Vibrio harveyi nitroreductase is also a chromate reductase. Appl Environ Microbiol 69:8 (2003), 4390–4395, 10.1128/AEM.69.8.4390-4395.2003.
Lim, J.C., Thevarajoo, S., Selvaratnam, C., Goh, K.M., Shamsir, M.S., Ibrahim, Z., et al. Global transcriptomic response of Anoxybacillus sp. SK 3-4 to aluminum exposure. J Basic Microbiol 57:2 (2017), 151–161, 10.1002/jobm.201600494.
Lin, H., Fischbach, M.A., Liu, D.R., Walsh, C.T., In vitro characterization of salmochelin and enterobactin trilactone hydrolases IroD, IroE, and Fes. J Am Chem Soc 127:31 (2005), 11075–11084, 10.1021/ja0522027.
Luque, N.B., Mujika, J.I., Rezabal, E., Ugalde, J.M., Lopez, X., Mapping the affinity of aluminum(III) for biophosphates: interaction mode and binding affinity in 1: 1 complexes. Phys Chem Chem Phys 16:37 (2014), 20107–20119, 10.1039/c4cp02770a.
Margesin, R., Walder, G., Schinner, F., The impact of hydrocarbon remediation (diesel oil and polycyclic aromatic hydrocarbons) on enzyme activities and microbial properties of soil. Acta Biotechnol 20:3-4 (2000), 313–333, 10.1002/abio.370200312.
Martínez-Toledo, Á., Montes-Rocha, A., González-Mille, D.J., Espinosa-Reyes, G., Torres-Dosal, A., Mejia-Saavedra, J.J., et al. Evaluation of enzyme activities in long-term polluted soils with mine tailing deposits of San Luis Potosí, México. J Soils Sed 17:2 (2016), 364–375, 10.1007/s11368-016-1529-8.
Martins, M., Taborda, R., Silva, G., Assuncao, A., Matos, A.P., Costa, M.C., Aluminum and sulphate removal by a highly Al-resistant dissimilatory sulphate-reducing bacteria community. Biodegradation 23:5 (2012), 693–703, 10.1007/s10532-012-9545-x.
McRose, D.L., Baars, O., Seyedsayamdost, M.R., Morel, F.M.M., Quorum sensing and iron regulate a two-for-one siderophore gene cluster in Vibrio harveyi. Proc Natl Acad Sci USA 115:29 (2018), 7581–7586, 10.1073/pnas.1805791115.
Mergeay, M., The history of Cupriavidus metallidurans strains isolated from anthropogenic environments. Mergeay, M., Van Houdt, R., (eds.) Metal Response in Cupriavidus metallidurans: Volume I: From Habitats to Genes and Proteins, 2015, Springer International Publishing, Cham, 1–19, 10.1007/978-3-319-20594-6_1.
Mergeay, M., Houba, C., Gerits, J., Extrachromosomal inheritance controlling resistance to cadmium, cobalt, copper and zinc ions: evidence from curing a Pseudomonas. Arch Physiol Biochem 86:2 (1978), 440–442.
Mergeay, M., Nies, D., Schlegel, H.G., Gerits, J., Charles, P., Van Gijsegem, F., Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:1 (1985), 328–334.
Mergeay, M., Van Houdt, R., Cupriavidus metallidurans CH34, a historical perspective on its discovery, characterization and metal resistance. FEMS Microbiol Ecol, 97(2), 2021, fiaa247, 10.1093/femsec/fiaa247.
Mermod, M., Mourlane, F., Waltersperger, S., Oberholzer, A.E., Baumann, U., Solioz, M., Structure and function of CinD (YtjD) of Lactococcus lactis, a copper-induced nitroreductase involved in defense against oxidative stress. J Bacteriol 192:16 (2010), 4172–4180, 10.1128/JB.00372-10.
Middaugh, J., Hamel, R., Jean-Baptiste, G., Beriault, R., Chenier, D., Appanna, V.D., Aluminum triggers decreased aconitase activity via Fe-S cluster disruption and the overexpression of isocitrate dehydrogenase and isocitrate lyase: a metabolic network mediating cellular survival. J Biol Chem 280:5 (2005), 3159–3165, 10.1074/jbc.M411979200.
Monsieurs, P., Hobman, J., Vandenbussche, G., Mergeay, M., Van Houdt, R., Response of Cupriavidus metallidurans CH34 to Metals. Met Response Cupriavidus Met, 2015, 45–89, 10.1007/978-3-319-20594-6_3.
Montante, C., 2014. Functional study of the plasmid-encoded CopB protein Involved in copper resistance in Cupriavidus metallidurans CH34.
Mujika, J.I., Dalla Torre, G., Lopez, X., Aluminum and Fenton reaction: how can the reaction be modulated by speciation? A computational study using citrate as a test case. Phys Chem Chem Phys 20:23 (2018), 16256–16265, 10.1039/c8cp02962h.
Munzinger, M., Taraz, K., Budzikiewicz, H., Staphyloferrin B, a citrate siderophore of Ralstonia eutropha. Z Fur Naturforsch C-a J Biosci 54:11 (1999), 867–875.
Nurzhan, A., Tian, H., Nuralykyzy, B., He, W., Soil enzyme activities and enzyme activity indices in long-term arsenic-contaminated soils. Eurasia Soil Sci 55:10 (2022), 1425–1435, 10.1134/S106422932210012x.
Olsson-Francis, K., R, V.A.N.H., Mergeay, M., Leys, N., Cockell, C.S., Microarray analysis of a microbe-mineral interaction. Geobiology 8:5 (2010), 446–456, 10.1111/j.1472-4669.2010.00253.x.
Olsson-Francis, K., Van Houdt, R., Mergeay, M., Leys, N., Cockell, C.S., Microarray analysis of a microbe-mineral interaction. Geobiology 8:5 (2010), 446–456, 10.1111/j.1472-4669.2010.00253.x.
Purwanti, I.F., Kurniawan, S.B., Imron, M.F., Potential of Pseudomonas aeruginosa isolated from aluminium-contaminated site in aluminium removal and recovery from wastewater. Environ Technol Innov, 15, 2019, 100422, 10.1016/j.eti.2019.100422.
Reith, F., Etschmann, B., Grosse, C., Moors, H., Benotmane, M.A., Monsieurs, P., et al. Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proc Natl Acad Sci USA 106:42 (2009), 17757–17762, 10.1073/pnas.0904583106.
Rogiers, T., Merroun, M.L., Williamson, A., Leys, N., Van Houdt, R., Boon, N., et al. Cupriavidus metallidurans NA4 actively forms polyhydroxybutyrate-associated uranium-phosphate precipitates. J Hazard Mater, 421, 2022, 126737, 10.1016/j.jhazmat.2021.126737.
Ruiperez, F., Mujika, J.I., Ugalde, J.M., Exley, C., Lopez, X., Pro-oxidant activity of aluminum: promoting the Fenton reaction by reducing Fe(III) to Fe(II). J Inorg Biochem 117 (2012), 118–123, 10.1016/j.jinorgbio.2012.09.008.
Schwechheimer, C., Kuehn, M.J., Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol 13:10 (2015), 605–619, 10.1038/nrmicro3525.
Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D1 (2019), D607–D613, 10.1093/nar/gky1131.
Titah, H.S., Purwanti, I.F., Tangahu, B.V., Kurniawan, S.B., Imron, M.F., Abdullah, S.R.S., et al. Kinetics of aluminium removal by locally isolated Brochothrix thermosphacta and Vibrio alginolyticus. J Environ Manag 238:March (2019), 194–200, 10.1016/j.jenvman.2019.03.011.
Tria, J., Butler, E.C., Haddad, P.R., Bowie, A.R., Determination of aluminium in natural water samples. Anal Chim Acta 588:2 (2007), 153–165, 10.1016/j.aca.2007.02.048.
Van Houdt, R., Monchy, S., Leys, N., Mergeay, M., New mobile genetic elements in Cupriavidus metallidurans CH34, their possible roles and occurrence in other bacteria. Antonie Van Leeuwenhoek 96:2 (2009), 205–226, 10.1007/s10482-009-9345-4.
Van Houdt, R., Provoost, A., Van Assche, A., Leys, N., Lievens, B., Mijnendonckx, K., et al. Cupriavidus metallidurans strains with different mobilomes and from distinct environments have comparable phenomes. Gene, 9(10), 2018, E507, 10.3390/genes9100507.
Verstraeten, S.V., Oteiza, P.I., Aluminum and phosphatidylinositol-specific-phospholipase C. Kretsinger, R.H., Uversky, V.N., Permyakov, E.A., (eds.) Encyclopedia of Metalloproteins, 2013, Springer New York, New York, NY, 24–32, 10.1007/978-1-4614-1533-6_433.
Wakao, N., Yasuda, T., Jojima, Y., Yamanaka, S., Hiraishi, A., Enhanced growth of Acidocella facilis and related acidophilic bacteria at high concentrations of aluminum. Microbes Environ 17:2 (2002), 98–104, 10.1264/jsme2.2002.98.
Wei, H., Gao, B., Ren, J., Li, A., Yang, H., Coagulation/flocculation in dewatering of sludge: a review. Water Res 143:2015 (2018), 608–631, 10.1016/j.watres.2018.07.029.
Wekesa, C., Muoma, J.O., Reichelt, M., Asudi, G.O., Furch, A.C.U., Oelmuller, R., The cell membrane of a novel Rhizobium phaseoli strain is the crucial target for aluminium toxicity and tolerance. Cells, 11(5), 2022, 10.3390/cells11050873.
Wiggerich, H.G., Klauke, B., Köplin, R., Priefer, U.B., Pühler, A., Unusual structure of the tonB-exb DNA region of Xanthomonas campestris pv. campestris: tonB, exbB, and exbD1 are essential for ferric iron uptake, but exbD2 is not. J Bacteriol 179:22 (1997), 7103–7110, 10.1128/jb.179.22.7103-7110.1997.
Xu, Y., Yu, W., Ma, Q., Wang, J., Zhou, H., Jiang, C., The combined effect of sulfadiazine and copper on soil microbial activity and community structure. Ecotoxicol Environ Saf 134P1, 2016, 43–52, 10.1016/j.ecoenv.2016.06.041.
Yan, L., Riaz, M., Liu, J., Yu, M., Cuncang, J., The aluminum tolerance and detoxification mechanisms in plants; recent advances and prospects. Crit Rev Environ Sci Technol 52:9 (2021), 1491–1527, 10.1080/10643389.2020.1859306.
Yu, X., Niks, D., Mulchandani, A., Hille, R., Efficient reduction of CO2 by the molybdenum-containing formate dehydrogenase from Cupriavidus necator (Ralstonia eutropha). J Biol Chem 292:41 (2017), 16872–16879, 10.1074/jbc.M117.785576.
Zatta, P., Kiss, T., Suwalsky, M., Berthon, G., Aluminium(III) as a promoter of cellular oxidation. Coord Chem Rev 228:2 (2002), 271–284, 10.1016/S0010-8545(02)00074-7.
Zhang, J., Zhang, L., Qiu, J., Nian, H., Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of Cryptococcus humicola response to aluminum stress. J Biosci Bioeng 120:4 (2015), 359–363, 10.1016/j.jbiosc.2015.02.007.
Zhao, Y.H., Li, H.M., Qin, L.F., Wang, H.H., Chen, G.Q., Disruption of the polyhydroxyalkanoate synthase gene in Aeromonas hydrophila reduces its survival ability under stress conditions. FEMS Microbiol Lett 276:1 (2007), 34–41, 10.1111/j.1574-6968.2007.00904.x.