Sabelnikov, V.A., Vlasenko, V.V., Combustion in Supersonic Flows and Scramjet Combustion Simulation. 2018, Springer, Singapore, Singapore, 585–660, 10.1007/978-981-10-7410-3_20.
MacKay, J.S., Weber, R.J., An Analysis of Ramjet Engines Using Supersonic Combustion. Sep. 1958.
Sam, L., Idithsaj, P., Nair, P.P., Suryan, A., Narayanan, V., Prospects for scramjet engines in reusable launch applications: a review. Int. J. Hydrog. Energy 48:92 (2023), 36094–36111, 10.1016/j.ijhydene.2023.05.341 https://www.sciencedirect.com/science/article/pii/S0360319923027593.
Berglund, M., Fedina, K., Fureby, C., Tegnér, J., Sabelnikov, V., Finite rate chemistry large-eddy simulation of self-ignition in supersonic combustion ramjet. AIAA J. 48 (2010), 540–550, 10.2514/1.43746.
Berglund, M., Wikström, N., Fureby, C., Numerical simulation of scramjet combustion. Tech. Rep., 2005, Swedish Defence Research Agency - FOI.
Génin, F., Menon, S., Simulation of turbulent mixing behind a strut injector in supersonic flow. AIAA J. 48:3 (2010), 526–539, 10.2514/1.43647.
Potturi, A., Edwards, J.R., LES/RANS simulation of a supersonic combustion experiment. 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2012, 10.2514/6.2012-611.
Potturi, A., Edwards, J.R., Investigation of subgrid closure models for finite-rate scramjet combustion. 43rd Fluid Dynamics Conference, 2013, 10.2514/6.2013-2461.
Saghafian, A., Terrapon, V.E., Pitsch, H., An efficient flamelet-based combustion model for compressible flows. Combust. Flame 162:3 (2015), 652–667, 10.1016/j.combustflame.2014.08.007.
Mura, A., Techer, A., Lehnasch, G., Analysis of high-speed combustion regimes of hydrogen jet in supersonic vitiated airstream. Combust. Flame, 239, 2022, 111552, 10.1016/j.combustflame.2021.111552.
Kun Wu, W.Y., Zhang, Peng, Fan, X., Numerical investigation on flame stabilization in dlr hydrogen supersonic combustor with strut injection. Combust. Sci. Technol. 189:12 (2017), 2154–2179, 10.1080/00102202.2017.1365847.
Sun, M.-B., Wang, Z.-G., Liang, J.-H., Geng, H., Flame characteristics in supersonic combustor with hydrogen injection upstream of cavity flameholder. J. Propuls. Power 24:4 (2008), 688–696, 10.2514/1.34970.
Xiang, Z., Yang, S., Xie, S., Li, J., Ren, H., Turbulence–chemistry interaction models with finite-rate chemistry and compressibility correction for simulation of supersonic turbulent combustion. Eng. Appl. Comput. Fluid Mech. 14:1 (2020), 1546–1561, 10.1080/19942060.2020.1842248.
Cutler, A.D., Danehy, P.M., Springer, R.R., O'Byrne, S., Capriotti, D.P., DeLoach, R., Coherent anti-Stokes Raman spectroscopic thermometry in a supersonic combustor. AIAA J. 41:12 (2003), 2451–2459, 10.2514/2.6844.
Ingenito, A., Bruno, C., Physics and regimes of supersonic combustion. AIAA J. 48:3 (2010), 515–525, 10.2514/1.43652.
Fureby, C., Fedina, E., Tegnér, J., A computational study of supersonic combustion behind a wedge-shaped flameholder. Shock Waves 24 (2013), 41–50, 10.1007/s00193-013-0459-2.
Waidmann, W., Alff, F., Brummund, U., Böhm, M., Clauss, W., Oschwald, M., Experimental investigation of the combustion process in a supersonic combustion ramjet. Tech. Rep., 1994, DLR Institute for Chemical Propulsion and Engineering, Hardthausen, Germany.
Quinlan, J., McDaniel, J.C., Drozda, T.G., Lacaze, G., Oefelein, J.C., A priori analysis of flamelet-based modeling for a dual-mode scramjet combustor. https://arc.aiaa.org/doi/pdf/10.2514/6.2014-3743 https://doi.org/10.2514/6.2014-3743 https://arc.aiaa.org/doi/abs/10.2514/6.2014-3743.
Oevermann, M., Numerical investigation of turbulent hydrogen combustion in a scramjet using flamelet modeling. Aerosp. Sci. Technol. 4 (2000), 463–480.
Moule, Y., Sabel'nikov, V., Mura, A., Modelling of self-ignition processes in supersonic non premixed coflowing jets based on a PaSR approach. 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2011, American Institute of Aeronautics and Astronautics, 10.2514/6.2011-2396.
Zhang, W., Zheng, X., Yan, P., Xue, R., Numerical simulation of scramjet engine with compressibility corrections on k-ϵ model based on openfoam. Int. Commun. Heat Mass Transf., 158, 2024, 107893, 10.1016/j.icheatmasstransfer.2024.107893 https://www.sciencedirect.com/science/article/pii/S0735193324006559.
Verma, K.A., Pandey, K.M., Ray, M., Sharma, K.K., The numerical investigation of combustion performance of scramjet combustor with variation in angle of attack. Results Eng., 15, 2022, 100507, 10.1016/j.rineng.2022.100507 https://www.sciencedirect.com/science/article/pii/S2590123022001773.
Bordoloi, N., Pandey, K.M., Ray, M., Sharma, K. Kumar, Computational investigation to interpret the reacting flow conditions for two different fuels in the scramjet combustor. Results Eng., 15, 2022, 100568, 10.1016/j.rineng.2022.100568 https://www.sciencedirect.com/science/article/pii/S2590123022002389.
Piscopo, A., Iavarone, S., Savarese, M., Riis, M., Crawford, B., Bessette, D., Orsino, S., Coussement, A., De Paepe, W., Parente, A., Mixing time scale analysis of the partially stirred reactor model for high-speed turbulent combustion of hydrogen in vitiated air. Acta Astronaut. 218 (2024), 70–89, 10.1016/j.actaastro.2024.02.009.
Burrows, M.C., Kurkov, A.P., Analytical and experimental study of supersonic combustion of hydrogen in a vitiated airstream. Tech. Rep. NASA-TM-X-2828, NASA, 1973.
Bray, K.N.C., Moss, J.B., A unified statistical model of the premixed turbulent flame. Acta Astronaut. 4:3 (1977), 291–319, 10.1016/0094-5765(77)90053-4.
Chomiak, J., Karlsson, A., Flame liftoff in diesel sprays. Symp., Int., Combust. 26:2 (1996), 2557–2564, 10.1016/S0082-0784(96)80088-9.
Chomiak, J., A possible propagation mechanism of turbulent flames at high Reynolds numbers. Combust. Flame 15:3 (1970), 319–321, 10.1016/0010-2180(70)90014-3.
Tanahashi, M., Sato, M., Shimura, M., Miyauchi, T., DNS and combined laser diagnostics of turbulent combustion. J. Therm. Sci. Technol. 3:3 (2008), 391–409, 10.1299/jtst.3.391.
Li, Z., Cuoci, A., Sadiki, A., Parente, A., Comprehensive numerical study of the adelaide jet in hot-coflow burner by means of rans and detailed chemistry. Energy 139 (2017), 555–570, 10.1016/j.energy.2017.07.132.
Lewandowski, M.T., Ertesvåg, I.S., Analysis of the eddy dissipation concept formulation for MILD combustion modelling. Fuel 224 (2018), 687–700, 10.1016/j.fuel.2018.03.110.
Péquin, A., Evans, M.J., Chinnici, A., Medwell, P.R., Parente, A., The reactor-based perspective on finite-rate chemistry in turbulent reacting flows: a review from traditional to low-emission combustion. Appl. Energy Combust. Sci., 16, 2023, 100201, 10.1016/j.jaecs.2023.100201.
Iavarone, S., Péquin, A., Chen, Z.X., Doan, N.A.K., Swaminathan, N., Parente, A., An a priori assessment of the partially stirred reactor (pasr) model for mild combustion. Proc. Combust. Inst. 38:4 (2021), 5403–5414, 10.1016/j.proci.2020.06.234.
Péquin, A., Iavarone, S., Galassi, R. Malpica, Parente, A., The partially stirred reactor model for combustion closure in large eddy simulations: physical principles, sub-models for the cell reacting fraction, and open challenges. Phys. Fluids, 34(5), 2022, 055122, 10.1063/5.0090970.
Iavarone, S., Cafiero, M., Ferrarotti, M., Contino, F., Parente, A., A multiscale combustion model formulation for nox predictions in hydrogen-enriched jet flames. Int. J. Hydrog. Energy 44:41 (2019), 23436–23457, 10.1016/j.ijhydene.2019.07.019.
Evans, M., Petre, C., Medwell, P., Parente, A., Generalisation of the eddy-dissipation concept for jet flames with low turbulence and low Damköhler number. Proc. Combust. Inst. 37:4 (2019), 4497–4505, 10.1016/j.proci.2018.06.017 https://www.sciencedirect.com/science/article/pii/S1540748918302001.
Ferrarotti, M., Li, Z., Parente, A., On the role of mixing models in the simulation of mild combustion using finite-rate chemistry combustion models. Proc. Combust. Inst. 37 (2019), 4531–4538, 10.1016/j.proci.2018.07.043.
Batchelor, G.K., Small-scale variation of convected quantities like temperature in turbulent fluid Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5:1 (1959), 113–133, 10.1017/S002211205900009X.
P. McMurtry, Turbulence - ME 7960, Course outline.
Poinsot, T., Veynante, D., Theoretical and Numerical Combustion. 2005, RT Edwards, Inc.
Li, J., Zhao, Z., Kazakov, A., Dryer, F.L., An updated comprehensive kinetic model of hydrogen combustion. Int. J. Chem. Kinet. 36 (2004), 566–575, 10.1002/kin.20026.
Vincent-Randonnier, A., Sabelnikov, V., Ristori, A., Zettervall, N., Fureby, C., An experimental and computational study of hydrogen–air combustion in the lapcat ii supersonic combustor. Proc. Combust. Inst. 37:3 (2019), 3703–3711, 10.1016/j.proci.2018.05.127.
Launder, B.E., Second-moment closure: present… and future?. Int. J. Heat Fluid Flow 10:4 (1989), 282–300, 10.1016/0142-727X(89)90017-9.
Gibson, M., Launder, B., Ground effects on pressure fluctuations in the atmospheric boundary layer. J. Fluid Mech. 86 (1978), 491–511, 10.1017/S0022112078001251.
Launder, B., Reece, G., Rodi, W., Progress in the development of a Reynolds stress turbulence closure. J. Fluid Mech. 68 (1975), 537–566, 10.1017/S0022112075001814.
Li, Z., Wang, J., Li, X., Application of hydrogen mechanisms in combustion simulation of dlr scramjet combustor and their effect on combustion performance. Fuel, 349, 2023, 128659, 10.1016/j.fuel.2023.128659 https://www.sciencedirect.com/science/article/pii/S0016236123012723.
Amaduzzi, R., Bertolino, A., Özden, A., Galassi, R.M., Parente, A., Impact of scalar mixing uncertainty on the predictions of reactor-based closures: application to a lifted methane/air jet flame. Proc. Combust. Inst., 2022, 10.1016/j.proci.2022.06.028.
Oberkampf, W.L., Barone, M.F., Measures of agreement between computation and experiment: validation metrics. J. Comput. Phys. 217:1 (2006), 5–36, 10.1016/j.jcp.2006.03.037.