Paper published in a journal (Scientific congresses and symposiums)
CIA: Controllable Image Augmentation Framework Based on Stable Diffusion
Benkedadra, Mohamed; Rimez, Dany; Godelaine, Tiffanie et al.
2024In IEEE Access, p. 600-606
Peer Reviewed verified by ORBi
 

Files


Full Text
2024172918.pdf
Author postprint (9.69 MB) Creative Commons License - Attribution
Request a copy

All documents in ORBi UMONS are protected by a user license.

Send to



Details



Keywords :
Computer Vision; Deep Learning; Data Augmentation; Stable Diffusion; Generative AI
Abstract :
[en] Computer vision tasks such as object detection and segmentation rely on the availability of extensive, accurately annotated datasets. In this work, We present CIA, a modular pipeline, for (1) generating synthetic images for dataset augmentation using Stable Diffusion, (2) filtering out low quality samples using defined quality metrics, (3) forcing the existence of specific patterns in generated images using accurate prompting and ControlNet. In order to show how CIA can be used to search for an optimal augmentation pipeline of training data, we study human object detection in a data constrained scenario, using YOLOv8n on COCO and Flickr30k datasets. We have recorded significant improvement using CIA-generated images, approaching the performances obtained when doubling the amount of real images in the dataset. Our findings suggest that our modular framework can significantly enhance object detection systems, and make it possible for future research to be done on data-constrained scenarios. The framework is available at: github.com/multitel-ai/CIA.
Disciplines :
Computer science
Author, co-author :
Benkedadra, Mohamed  ;  Université de Mons - UMONS > Faculté Polytechnique > Service Informatique, Logiciel et Intelligence artificielle
Rimez, Dany;  UCLouvain,Louvain-La-Neuve,Belgium
Godelaine, Tiffanie;  UCLouvain,Louvain-La-Neuve,Belgium
Chidambaram, Natarajan  ;  Université de Mons - UMONS > Faculté des Sciences > Service de Génie Logiciel
Khosroshahi, Hamed Razavi;  Université libre de Bruxelles,Brussels,Belgium
Tellez, Horacio;  Multitel,Mons,Belgium
Mancas, Matei  ;  Université de Mons - UMONS > Faculté Polytechnique > Service Information, Signal et Intelligence artificielle
Macq, Benoit;  UCLouvain,Louvain-La-Neuve,Belgium
Mahmoudi, Sidi  ;  Université de Mons - UMONS > Faculté Polytechnique > Service Informatique, Logiciel et Intelligence artificielle
Language :
English
Title :
CIA: Controllable Image Augmentation Framework Based on Stable Diffusion
Original title :
[en] CIA: Controllable Image Augmentation Framework Based on Stable Diffusion
Publication date :
07 August 2024
Event name :
IEEE International Conference on Multimedia Information Processing and Retrieval (MIPR) 2025
Event organizer :
IEEE
Event place :
San Jose, United States
Event date :
07/08/2024
Audience :
International
Journal title :
IEEE Access
ISSN :
2169-3536
Publisher :
Institute of Electrical and Electronics Engineers, United States - New Jersey
Pages :
600-606
Peer reviewed :
Peer Reviewed verified by ORBi
Research unit :
F105 - Information, Signal et Intelligence artificielle
- Information, Signal and Artificial Intelligence
F114 - Informatique, Logiciel et Intelligence artificielle
Research institute :
Infortech
Numediart
R450 - Institut NUMEDIART pour les Technologies des Arts Numériques
Name of the research project :
5443 - ARIAC BY DIGITALWALLONIA4.AI - Applications et Recherche pour une Intelligence Artificielle de Confiance - Région wallonne
Available on ORBi UMONS :
since 21 October 2024

Statistics


Number of views
6 (3 by UMONS)
Number of downloads
0 (0 by UMONS)

OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi UMONS