Computer Vision; Deep Learning; Data Augmentation; Stable Diffusion; Generative AI
Abstract :
[en] Computer vision tasks such as object detection and segmentation rely on the availability of extensive, accurately annotated datasets. In this work, We present CIA, a modular pipeline, for (1) generating synthetic images for dataset augmentation using Stable Diffusion, (2) filtering out low quality samples using defined quality metrics, (3) forcing the existence of specific patterns in generated images using accurate prompting and ControlNet. In order to show how CIA can be used to search for an optimal augmentation pipeline of training data, we study human object detection in a data constrained scenario, using YOLOv8n on COCO and Flickr30k datasets. We have recorded significant improvement using CIA-generated images, approaching the performances obtained when doubling the amount of real images in the dataset. Our findings suggest that our modular framework can significantly enhance object detection systems, and make it possible for future research to be done on data-constrained scenarios. The framework is available at: github.com/multitel-ai/CIA.
Disciplines :
Computer science
Author, co-author :
Benkedadra, Mohamed ; Université de Mons - UMONS > Faculté Polytechnique > Service Informatique, Logiciel et Intelligence artificielle
F105 - Information, Signal et Intelligence artificielle - Information, Signal and Artificial Intelligence F114 - Informatique, Logiciel et Intelligence artificielle
Research institute :
Infortech Numediart R450 - Institut NUMEDIART pour les Technologies des Arts Numériques
Name of the research project :
5443 - ARIAC BY DIGITALWALLONIA4.AI - Applications et Recherche pour une Intelligence Artificielle de Confiance - Région wallonne