[en] Surface terminations profoundly influence the intrinsic properties of MXenes, but existing terminations are limited to monoatomic layers or simple groups, showing disordered arrangements and inferior stability. Here we present the synthesis of MXenes with triatomic-layer borate polyanion terminations (OBO terminations) through a flux-assisted eutectic molten etching approach. During the synthesis, Lewis acidic salts act as the etching agent to obtain the MXene backbone, while borax generates BO2- species, which cap the MXene surface with an O-B-O configuration. In contrast to conventional chlorine/oxygen-terminated Nb2C with localized charge transport, OBO-terminated Nb2C features band transport described by the Drude model, exhibiting a 15-fold increase in electrical conductivity and a 10-fold improvement in charge mobility at the d.c. limit. This transition is attributed to surface ordering that effectively mitigates charge carrier backscattering and trapping. Additionally, OBO terminations provide Ti3C2 MXene with substantially enriched Li+-hosting sites and thereby a large charge-storage capacity of 420 mAh g-1. Our findings illustrate the potential of intricate termination configurations in MXenes and their applications for (opto)electronics and energy storage.
Disciplines :
Chemistry
Author, co-author :
Li, Dongqi ; Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden, Germany
Zheng, Wenhao ; Max Planck Institute for Polymer Research, Mainz, Germany
Gali, Sai Manoj ; Université de Mons - UMONS > Faculté des Sciences > Service de Chimie des matériaux nouveaux
Sobczak, Kamil ; Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
Horák, Michal ; CEITEC BUT, Brno University of Technology, Brno, Czech Republic ; Faculty of Mechanical Engineering, Institute of Physical Engineering, Brno University of Technology, Brno, Czech Republic
Polčák, Josef; CEITEC BUT, Brno University of Technology, Brno, Czech Republic ; Faculty of Mechanical Engineering, Institute of Physical Engineering, Brno University of Technology, Brno, Czech Republic
Lopatik, Nikolaj; Chair of Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
Li, Zichao; Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
Zhang, Jiaxu; Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden, Germany
Sabaghi, Davood; Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden, Germany
Zhou, Shengqiang ; Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
Michałowski, Paweł P ; Łukasiewicz Research Network-Institute of Microelectronics and Photonics, Warsaw, Poland
Zschech, Ehrenfried ; Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
Brunner, Eike; Chair of Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
Donten, Mikołaj; Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
Šikola, Tomáš; CEITEC BUT, Brno University of Technology, Brno, Czech Republic ; Faculty of Mechanical Engineering, Institute of Physical Engineering, Brno University of Technology, Brno, Czech Republic
Bonn, Mischa ; Max Planck Institute for Polymer Research, Mainz, Germany
Wang, Hai I ; Max Planck Institute for Polymer Research, Mainz, Germany. wanghai@mpip-mainz.mpg.de ; Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands. wanghai@mpip-mainz.mpg.de
Beljonne, David ; Université de Mons - UMONS > Faculté des Sciences > Service de Chimie des matériaux nouveaux
Yu, Minghao ; Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden, Germany. minghao.yu@tu-dresden.de
Feng, Xinliang ; Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden, Germany. xinliang.feng@tu-dresden.de ; Max Planck Institute of Microstructure Physics, Halle (Saale), Germany. xinliang.feng@tu-dresden.de
R400 - Institut de Recherche en Science et Ingénierie des Matériaux
Funders :
EC | Horizon 2020 Framework Programme Deutsche Forschungsgemeinschaft Ministry of Science and Higher Education | Narodowe Centrum Badan i Rozwoju Technologická Agentura Ceské Republiky Grantová Agentura Ceské Republiky Fonds De La Recherche Scientifique - FNRS
Funding text :
We acknowledge support from European Union\u2019s Horizon 2020 Research and Innovation programme (GrapheneCore3 881603, LIGHT-CAP 101017821, GREENCAP 101091572, X.F.), M-ERA.NET and S\u00E4chsisches Staatsministerium f\u00FCr Wissenschaft und Kunst (HYSUCAP 100478697, E.Z., T.\u0160., X.F.), and the German Research Foundation (DFG, CRC1415, grant number 417590517, E.B., M.Y., X.F.). TA\u010CR EPSILON project (number TH71020004, T.\u0160.), GA\u010CR project (number 23-07617\u2009S, T.\u0160.) and CzechNanoLab project (number LM2023051, T.\u0160.) funded by MEYS CR are gratefully acknowledged for the financial support of the measurements in the CEITEC Nano Research Infrastructure. D.B. acknowledges support of computational resources in Mons by the FNRS \u2018Consortium des Equipements de Calcul Intensif\u2212CECI\u2019 programme (grant number 2.5020.11) and by the Walloon Region (ZENOBE Tier-1 supercomputer, 1117545). D.L. acknowledges support from the China Scholarships Council (CSC). P.P.M. was supported by the National Science Centre (project number 2018/31/D/ST5/00399) and the National Centre for Research and Development (project number LIDER/8/0055/L-12/20/NCBR/2021). The authors acknowledge the use of the facilities at the Dresden Center for Nanoanalysis (DCN), Technische Universit\u00E4t Dresden, the Gemeinsamen Wissenschaftskonferenz (GWK) support for providing computing time through the Center for Information Services and High-Performance Computing (ZIH) at TU Dresden, and beam-time allocation at beamline P65 of the PETRA III synchrotron (DESY, Hamburg, Germany) and beamline BL04 of the ALBA synchrotron (Barcelona, Spain). We specially thank S. Voborn\u00FD, P. Jadhao and P. Chen for helpful discussions.
B. Anasori M.R. Lukatskaya Y. Gogotsi 2D metal carbides and nitrides (MXenes) for energy storage Nat. Rev. Mater. 2017 2 16098 1:CAS:528:DC%2BC2sXislGis7c%3D 10.1038/natrevmats.2016.98
T. Zhao et al. Ultrathin MXene assemblies approach the intrinsic absorption limit in the 0.5–10 THz band Nat. Photonics 2023 17 622 628 1:CAS:528:DC%2BB3sXosVGitbs%3D 10.1038/s41566-023-01197-x
W. Zheng et al. Band transport by large Fröhlich polarons in MXenes Nat. Phys. 2022 18 544 550 1:CAS:528:DC%2BB38XnslSltrc%3D 10.1038/s41567-022-01541-y
S. Liu et al. Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature Nat. Nanotechnol. 2021 16 331 336 1:CAS:528:DC%2BB3MXkslahtg%3D%3D 10.1038/s41565-020-00818-8 33398176
X. Xie et al. Microstructure and surface control of MXene films for water purification Nat. Sustain. 2019 2 856 862 10.1038/s41893-019-0373-4
A.V. Mohammadi J. Rosen Y. Gogotsi The world of two-dimensional carbides and nitrides (MXenes) Science 2021 372 eabf1581 10.1126/science.abf1581
M. Faraji et al. Surface modification of titanium carbide MXene monolayers (Ti2C and Ti3C2) via chalcogenide and halogenide atoms Phys. Chem. Chem. Phys. 2021 23 15319 15328 1:CAS:528:DC%2BB3MXhtlyhsL3P 10.1039/D1CP01788H 34254093
J.L. Hart et al. Control of MXenes’ electronic properties through termination and intercalation Nat. Commun. 2019 10 1:CAS:528:DC%2BC1MXnt1Wks7w%3D 10.1038/s41467-018-08169-8 30705273 6355901
V. Kamysbayev et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes Science 2020 369 979 983 1:CAS:528:DC%2BB3cXhs1GrsbzL 10.1126/science.aba8311 32616671
Y. Li et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte Nat. Mater. 2020 19 894 899 1:CAS:528:DC%2BB3cXmvFylsrs%3D 10.1038/s41563-020-0657-0 32284597
M. Li et al. Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries ACS Nano 2021 15 1077 1085 1:CAS:528:DC%2BB3MXmtFykuw%3D%3D 10.1021/acsnano.0c07972 33415973
M. Li et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes J. Am. Chem. Soc. 2019 141 4730 4737 1:CAS:528:DC%2BC1MXktVCiu7w%3D 10.1021/jacs.9b00574 30821963
H. Ding et al. Chemical scissor-mediated structural editing of layered transition metal carbides Science 2023 379 1130 1135 1:CAS:528:DC%2BB3sXls1ertrw%3D 10.1126/science.add5901 36927013
C. Wang et al. HCl-based hydrothermal etching strategy toward fluoride-free MXenes Adv. Mater. 2021 33 2101015 1:CAS:528:DC%2BB3MXhsVCmtLrO 10.1002/adma.202101015
T. Li et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment Angew. Chemie Int. Ed. 2018 57 6115 6119 1:CAS:528:DC%2BC1cXosVWntL4%3D 10.1002/anie.201800887
S. Yang et al. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system Angew. Chem. Int. Ed. 2018 57 15491 15495 1:CAS:528:DC%2BC1cXitVWru7nE 10.1002/anie.201809662
H. Shi et al. Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching Angew. Chem. Int. Ed. 2021 60 8689 8693 1:CAS:528:DC%2BB3MXmt1akurg%3D 10.1002/anie.202015627
S. Lai et al. Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: –OH, –F and –O) Nanoscale 2015 7 19390 19396 1:CAS:528:DC%2BC2MXhslWhtbzO 10.1039/C5NR06513E 26535782
A. Saha et al. Enhancing the energy storage capabilities of Ti3C2Tx MXene electrodes by atomic surface reduction Adv. Funct. Mater. 2021 31 2106294 1:CAS:528:DC%2BB3MXitFGrtb%2FF 10.1002/adfm.202106294
B. Zhou Z. Sun Y. Yao Y. Pan Correlations between 11B NMR parameters and structural characters in borate and borosilicate minerals investigated by high-resolution MAS NMR and ab initio calculations Phys. Chem. Miner. 2012 39 363 372 1:CAS:528:DC%2BC38XlvFWlt78%3D 10.1007/s00269-012-0482-3
B. Ravel M. Newville ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT J. Synchrotron Radiat. 2005 12 537 541 1:CAS:528:DC%2BD2MXltlCntLo%3D 10.1107/S0909049505012719 15968136
P.P. Michałowski et al. Oxycarbide MXenes and MAX phases identification using monoatomic layer-by-layer analysis with ultralow-energy secondary-ion mass spectrometry Nat. Nanotechnol. 2022 17 1192 1197 10.1038/s41565-022-01214-0 36138199
B.H. Toby R.B. Von Dreele GSAS-II: the genesis of a modern open-source all purpose crystallography software package J. Appl. Crystallogr. 2013 46 544 549 1:CAS:528:DC%2BC3sXjvFWnu7c%3D 10.1107/S0021889813003531
J. Halim et al. Variable range hopping and thermally activated transport in molybdenum-based MXenes Phys. Rev. B 2018 98 1:CAS:528:DC%2BC1MXltVKlsL4%3D 10.1103/PhysRevB.98.104202
H. Němec P. Ǩuel V. Sundström Charge transport in nanostructured materials for solar energy conversion studied by time-resolved terahertz spectroscopy J. Photochem. Photobiol. A 2010 215 123 139 10.1016/j.jphotochem.2010.08.006
R. Ulbricht E. Hendry J. Shan T.F. Heinz M. Bonn Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy Rev. Mod. Phys. 2011 83 543 586 1:CAS:528:DC%2BC3MXos1eitrc%3D 10.1103/RevModPhys.83.543
R. Dong et al. High-mobility band-like charge transport in a semiconducting two-dimensional metal–organic framework Nat. Mater. 2018 17 1027 1032 1:CAS:528:DC%2BC1cXhvFajsL3O 10.1038/s41563-018-0189-z 30323335
T.L. Cocker et al. Microscopic origin of the Drude–Smith model Phys. Rev. B 2017 96 10.1103/PhysRevB.96.205439
W. Zheng M. Bonn H.I. Wang Photoconductivity multiplication in semiconducting few-layer MoTe2 Nano Lett. 2020 20 5807 5813 1:CAS:528:DC%2BB3cXhsVaqtrrJ 10.1021/acs.nanolett.0c01693 32697101 7458477
X. Wang et al. Influences from solvents on charge storage in titanium carbide MXenes Nat. Energy 2019 4 241 248 1:CAS:528:DC%2BC1MXmslKjurw%3D 10.1038/s41560-019-0339-9
D. Wang et al. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes Science 2023 379 1242 1247 1:CAS:528:DC%2BB3sXlvVKjsrs%3D 10.1126/science.add9204 36952427
C. Zhou et al. Hybrid organic–inorganic two-dimensional metal carbide MXenes with amido- and imido-terminated surfaces Nat. Chem. 2023 15 1722 1729 1:CAS:528:DC%2BB3sXhs1ejtrrJ 10.1038/s41557-023-01288-w 37537297
G. Kresse J. Furthmüller Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Phys. Rev. B 1996 54 11169 11186 1:CAS:528:DyaK28Xms1Whu7Y%3D 10.1103/PhysRevB.54.11169
G. Kresse D. Joubert From ultrasoft pseudopotentials to the projector augmented-wave method Phys. Rev. B 1999 59 1758 1775 1:CAS:528:DyaK1MXkt12nug%3D%3D 10.1103/PhysRevB.59.1758
J.P. Perdew K. Burke M. Ernzerhof Generalized gradient approximation made simple Phys. Rev. Lett. 1996 77 3865 3868 1:CAS:528:DyaK28XmsVCgsbs%3D 10.1103/PhysRevLett.77.3865 10062328
S. Grimme Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction J. Comput. Chem. 2006 27 1787 1799 1:CAS:528:DC%2BD28XhtFenu7bO 10.1002/jcc.20495 16955487
N.G. Limas T.A. Manz Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and more RSC Adv. 2018 8 2678 2707 1:CAS:528:DC%2BC1cXntVKgtg%3D%3D 10.1039/C7RA11829E 35541489 9077577
G. Henkelman H. Jónsson Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points J. Chem. Phys. 2000 113 9978 9985 1:CAS:528:DC%2BD3cXosFagu7Y%3D 10.1063/1.1323224
G. Henkelman B.P. Uberuaga H. Jónsson A climbing image nudged elastic band method for finding saddle points and minimum energy paths J. Chem. Phys. 2000 113 9901 9904 1:CAS:528:DC%2BD3cXosFagurc%3D 10.1063/1.1329672