[en] Herein, we describe a solvent-free bioinspired approach for the polymerization of ethylene brassylate. Artificial plant cell walls (APCWs) with an integrated enzyme were fabricated by self-assembly, using microcrystalline cellulose as the main structural component. The resulting APCW catalysts were tested in bulk reactions and reactive extrusion, leading to high monomer conversion and a molar mass of around 4 kDa. In addition, we discovered that APCW catalyzes the formation of large ethylene brassylate macrocycles. The enzymatic stability and efficiency of the APCW were investigated by recycling the catalyst both in bulk and reactive extrusion. The obtained poly(ethylene brassylate) was applied as a biobased and biodegradable hydrophobic paper coating.
Disciplines :
Chemistry
Author, co-author :
Deiana, Luca; Department of Natural Sciences, Mid Sweden University, Holmgatan 10, Sundsvall 85179, Sweden
Avella, Angelica ; Department of Industrial and Materials Science, Chalmers University of Technology, Rännvägen 2a, Gothenburg 41258, Sweden
Rafi, Abdolrahim A; Department of Natural Sciences, Mid Sweden University, Holmgatan 10, Sundsvall 85179, Sweden
MINCHEVA, Rosica ; Université de Mons - UMONS > Faculté des Sciences > Service des Matériaux Polymères et Composites
DE WINTER, Julien ; Université de Mons - UMONS > Faculté des Sciences > Service de Synthèse et spectrométrie de masse organiques
Lo Re, Giada ; Department of Industrial and Materials Science, Chalmers University of Technology, Rännvägen 2a, Gothenburg 41258, Sweden
Córdova, Armando ; Department of Natural Sciences, Mid Sweden University, Holmgatan 10, Sundsvall 85179, Sweden
Language :
English
Title :
In Situ Enzymatic Polymerization of Ethylene Brassylate Mediated by Artificial Plant Cell Walls in Reactive Extrusion.
Vetenskapsr?det European Commission European Regional Development Fund Wallenberg Wood Science Center VINNOVA Knut och Alice Wallenbergs Stiftelse Knowledge Foundation Wallonia programs
Funding text :
A.C. acknowledges the Swedish Research Council (2018-04425), European Union, VINNOVA, and Knowledge Foundation for financial support. G.L.R. acknowledges the support of the Knut and Alice Wallenberg Biocomposites program [grant number V-2019-0041, Dnr. KAW 2018.0551] and the Wallenberg Wood Science Center (WWSC) 3.0 program. R.M. is grateful to the EU-FEDER and Wallonia programs for funding in the frame of the UP_PLASTICS_1_UMONS project.
Owusu, P. A.; Asumadu-Sarkodie, S. A Review of Renewable Energy Sources, Sustainability Issues and Climate Change Mitigation. Cogent Eng. 2016, 3 ( 1), 1167990, 10.1080/23311916.2016.1167990
Rajeswari, S. Natural Polymers: A Recent Review. World J. Pharm. Pharm. Sci. 2017, 6 ( 8), 472- 494, 10.20959/wjpps20178-9762
Martinelli, A.; Giannini, L.; Branduardi, P. Enzymatic Modification of Cellulose To Unlock Its Exploitation in Advanced Materials. ChemBioChem 2020, 22 ( 6), 974- 981, 10.1002/cbic.202000643
Gennari, A.; Führ, A. J.; Volpato, G.; Volken de Souza, C. F. Magnetic Cellulose: Versatile Support for Enzyme Immobilization - A Review. Carbohydr. Polym. 2020, 246, 116646, 10.1016/j.carbpol.2020.116646
Califano, D.; Patenall, B. L.; Kadowaki, M. A. S.; Mattia, D.; Scott, J. L.; Edler, K. J. Enzyme-Functionalized Cellulose Beads as a Promising Antimicrobial Material. Biomacromolecules 2021, 22 ( 2), 754- 762, 10.1021/acs.biomac.0c01536
Vasconcelos, N. F.; Andrade, F. K.; Vieira, L. de A. P.; Vieira, R. S.; Vaz, J. M.; Chevallier, P.; Mantovani, D.; Borges, M. de F.; Rosa, M. de F. Oxidized Bacterial Cellulose Membrane as Support for Enzyme Immobilization: Properties and Morphological Features. Cellulose 2020, 27 ( 6), 3055- 3083, 10.1007/s10570-020-02966-5
Sharma, S.; Kanwar, S. S. Organic Solvent Tolerant Lipases and Applications. Sci. World J. 2014, 2014, 625258, 10.1155/2014/625258
Rahman, R. N. Z. R. A.; Baharum, S. N.; Basri, M.; Salleh, A. B. High-Yield Purification of an Organic Solvent-Tolerant Lipase from Pseudomonas Sp. Strain S5. Anal. Biochem. 2005, 341 ( 2), 267- 274, 10.1016/j.ab.2005.03.006
Zdarta, J.; Meyer, A. S.; Jesionowski, T.; Pinelo, M. A General Overview of Support Materials for Enzyme Immobilization: Characteristics, Properties, Practical Utility. Catalysts 2018, 8 ( 2), 92, 10.3390/catal8020092
Wehtje, E.; Adlercreutz, P.; Mattiasson, B. Improved Activity Retention of Enzymes Deposited on Solid Supports. Biotechnol. Bioeng. 1993, 41 ( 2), 171- 178, 10.1002/bit.260410202
Fang, Y.; Zhang, A.; Li, S.; Sproviero, M.; Xu, M. Q. Enzyme Immobilization for Solid-Phase Catalysis. Catalysts 2019, 9 ( 9), 732, 10.3390/catal9090732
Imam, H. T.; Marr, P. C.; Marr, A. C. Enzyme Entrapment, Biocatalyst Immobilization without Covalent Attachment. Green Chem. 2021, 23 ( 14), 4980- 5005, 10.1039/D1GC01852C
Luckarift, H. R.; Spain, J. C.; Naik, R. R.; Stone, M. O. Enzyme Immobilization in a Biomimetic Silica Support. Nat. Biotechnol. 2004, 22 ( 2), 211- 213, 10.1038/nbt931
Engström, K.; Johnston, E. V.; Verho, O.; Gustafson, K. P. J.; Shakeri, M.; Tai, C. W.; Bäckvall, J. E. Co-Immobilization of an Enzyme and a Metal into the Compartments of Mesoporous Silica for Cooperative Tandem Catalysis: An Artificial Metalloenzyme. Angew. Chem., Int. Ed. 2013, 52 ( 52), 14006- 14010, 10.1002/anie.201306487
Wang, J.; Zhu, J.; Wu, S. Immobilization on Macroporous Resin Makes E. Coli RutB a Robust Catalyst for Production of (−) Vince Lactam. Appl. Microbiol. Biotechnol. 2015, 99 ( 11), 4691- 4700, 10.1007/s00253-014-6247-9
Seelajaroen, H.; Bakandritsos, A.; Otyepka, M.; Zbořil, R.; Sariciftci, N. S. Immobilized Enzymes on Graphene as Nanobiocatalyst. ACS Appl. Mater. Interfaces 2020, 12 ( 1), 250- 259, 10.1021/acsami.9b17777
Jesionowski, T.; Zdarta, J.; Krajewska, B. Enzyme Immobilization by Adsorption: A Review. Adsorption 2014, 20 ( 5-6), 801- 821, 10.1007/s10450-014-9623-y
Böhm, A.; Trosien, S.; Avrutina, O.; Kolmar, H.; Biesalski, M. Covalent Attachment of Enzymes to Paper Fibers for Paper-Based Analytical Devices. Front. Chem. 2018, 6, 214, 10.3389/fchem.2018.00214
Suvarli, N.; Wenger, L.; Serra, C.; Perner-Nochta, I.; Hubbuch, J.; Wörner, M. Immobilization of β-Galactosidase by Encapsulation of Enzyme-Conjugated Polymer Nanoparticles Inside Hydrogel Microparticles. Front. Bioeng. Biotechnol. 2022, 9, 818053, 10.3389/fbioe.2021.818053
Görbe, T.; Gustafson, K. P. J.; Verho, O.; Kervefors, G.; Zheng, H.; Zou, X.; Johnston, E. V.; Bäckvall, J. E. Design of a Pd(0)-CalB CLEA Biohybrid Catalyst and Its Application in a One-Pot Cascade Reaction. ACS Catal. 2017, 7 ( 3), 1601- 1605, 10.1021/acscatal.6b03481
Shao, Y.; Liao, Z.; Gao, B.; He, B. Emerging 3D printing strategies for enzyme immobilization: Materials, methods, and applications. ACS Omega 2022, 7 ( 14), 11530- 11543, 10.1021/acsomega.2c00357
Environment and Climate Change-EUR-Lex. https://eur-lex.europa.eu/summary/chapter/20.html. (accessed Mar 7, 2024).
Varma, I. K.; Albertsson, A. C.; Rajkhowa, R.; Srivastava, R. K. Enzyme Catalyzed Synthesis of Polyesters. Prog. Polym. Sci. 2005, 30 ( 10), 949- 981, 10.1016/j.progpolymsci.2005.06.010
Stergiou, P. Y.; Foukis, A.; Filippou, M.; Koukouritaki, M.; Parapouli, M.; Theodorou, L. G.; Hatziloukas, E.; Afendra, A.; Pandey, A.; Papamichael, E. M. Advances in Lipase-Catalyzed Esterification Reactions. Biotechnol. Adv. 2013, 31 ( 8), 1846- 1859, 10.1016/j.biotechadv.2013.08.006
Li, H.; Zhang, X. Characterization of Thermostable Lipase from Thermophilic Geobacillus Sp. TW1. Protein Expression Purif. 2005, 42 ( 1), 153- 159, 10.1016/j.pep.2005.03.011
Zhao, H. Enzymatic Polymerization to Polyesters in Nonaqueous Solvents. Methods Enzymol. 2019, 627, 1- 21, 10.1016/bs.mie.2019.03.002
Jiang, Y.; Loos, K. Enzymatic Synthesis of Biobased Polyesters and Polyamides. Polymers 2016, 8 ( 7), 243, 10.3390/polym8070243
Liu, Y.; Song, L.; Feng, N.; Jiang, W.; Jin, Y.; Li, X. Recent Advances in the Synthesis of Biodegradable Polyesters by Sustainable Polymerization: Lipase-Catalyzed Polymerization. RSC Adv. 2020, 10 ( 59), 36230- 36240, 10.1039/D0RA07138B
Pfluck, A. C. D.; de Barros, D. P. C.; Fonseca, L. P. Biodegradable Polyester Synthesis in Renewed Aqueous Polycondensation Media: The Core of the New Greener Polymer-5B Technology. Process 2021, 9 ( 2), 365, 10.3390/pr9020365
Målberg, S.; Finne-Wistrand, A.; Albertsson, A. C. The Environmental Influence in Enzymatic Polymerization of Aliphatic Polyesters in Bulk and Aqueous Mini-Emulsion. Polymer 2010, 51 ( 23), 5318- 5322, 10.1016/j.polymer.2010.09.016
Kobayashi, S.; Uyama, H.; Namekawa, S. In Vitro Biosynthesis of Polyesters with Isolated Enzymes in Aqueous Systems and Organic Solvents. Polym. Degrad. Stab. 1998, 59 ( 1-3), 195- 201, 10.1016/S0141-3910(97)00178-X
Li, M. B.; Yang, Y.; Rafi, A. A.; Oschmann, M.; Grape, E. S.; Inge, A. K.; Córdova, A.; Bäckvall, J. E. Silver-Triggered Activity of a Heterogeneous Palladium Catalyst in Oxidative Carbonylation Reactions. Angew. Chem., Int. Ed. 2020, 59 ( 26), 10391- 10395, 10.1002/anie.202001809
Córdova, A.; Afewerki, S.; Alimohammadzadeh, R.; Sanhueza, I.; Tai, C. W.; Osong, S. H.; Engstrand, P.; Ibrahem, I. A Sustainable Strategy for Production and Functionalization of Nanocelluloses. Pure Appl. Chem. 2019, 91 ( 5), 865- 874, 10.1515/pac-2018-0204
Deiana, L.; Jiang, Y.; Palo-Nieto, C.; Afewerki, S.; Incerti-Pradillos, C. A.; Verho, O.; Tai, C. W.; Johnston, E. V.; Cõrdova, A. Combined Heterogeneous Metal/Chiral Amine: Multiple Relay Catalysis for Versatile Eco-Friendly Synthesis. Angew. Chem., Int. Ed. 2014, 53 ( 13), 3447- 3451, 10.1002/anie.201310216
Palo-Nieto, C.; Afewerki, S.; Anderson, M.; Tai, C. W.; Berglund, P.; Córdova, A. Integrated Heterogeneous Metal/Enzymatic Multiple Relay Catalysis for Eco-Friendly and Asymmetric Synthesis. ACS Catal. 2016, 6 ( 6), 3932- 3940, 10.1021/acscatal.6b01031
Deiana, L.; Afewerki, S.; Palo-Nieto, C.; Verho, O.; Johnston, E. V.; Córdova, A. Highly Enantioselective Cascade Transformations by Merging Heterogeneous Transition Metal Catalysis with Asymmetric Aminocatalysis. Sci. Rep. 2012, 2 ( 1), 851, 10.1038/srep00851
Deiana, L.; Rafi, A. A.; Naidu, V. R.; Tai, C. W.; Bäckvall, J. E.; Córdova, A. Artificial Plant Cell Walls as Multi-Catalyst Systems for Enzymatic Cooperative Asymmetric Catalysis in Non-Aqueous Media. Chem. Commun. 2021, 57 ( 70), 8814- 8817, 10.1039/D1CC02878B
Müller, S.; Uyama, H.; Kobayashi, S. Lipase-Catalyzed Ring-Opening Polymerization of Cyclic Diesters. Chem. Lett. 1999, 28, 1317- 1318, 10.1246/cl.1999.1317
Butron, A.; Llorente, O.; Fernandez, J.; Meaurio, E.; Sarasua, J. R. Morphology and Mechanical Properties of Poly(Ethylene Brassylate)/Cellulose Nanocrystal Composites. Carbohydr. Polym. 2019, 221, 137- 145, 10.1016/j.carbpol.2019.05.091
Fernández, J.; Amestoy, H.; Sardon, H.; Aguirre, M.; Varga, A. L.; Sarasua, J. R. Effect of Molecular Weight on the Physical Properties of Poly(Ethylene Brassylate) Homopolymers. J. Mech. Behav. Biomed. Mater. 2016, 64, 209- 219, 10.1016/j.jmbbm.2016.07.031
He, M.; Cheng, Y.; Liang, Y.; Xia, M.; Leng, X.; Wang, Y.; Wei, Z.; Zhang, W.; Li, Y. Amino Acid Complexes with Tin as a New Class of Catalysts with High Reactivity and Low Toxicity towards Biocompatible Aliphatic Polyesters. Polym. J. 2020, 52 ( 6), 567- 574, 10.1038/s41428-020-0314-0
Jin, C.; Wei, Z.; Yu, Y.; Sui, M.; Leng, X.; Li, Y. Copolymerization of Ethylene Brassylate with δ-Valerolactone towards Isodimorphic Random Copolyesters with Continuously Tunable Mechanical Properties. Eur. Polym. J. 2018, 102, 90- 100, 10.1016/j.eurpolymj.2018.03.018
Li, J.; Wang, S.; Lu, H.; Tu, Y.; Wan, X.; Li, X.; Tu, Y.; Li, C. Y. Helical Crystals in Aliphatic Copolyesters: From Chiral Amplification to Mechanical Property Enhancement. ACS Macro Lett. 2023, 12, 369- 375, 10.1021/acsmacrolett.2c00753
Wang, X.; Wang, X.; Zhen, N.; Gu, J.; Zhang, H.; Dong, B.; Wang, F.; Liu, H. Sodium Complexes Bearing Cavity-like Conformations: A Highly Active and Well-Controlled Catalytic System for Macrolactone Homo- and Copolymerization. Polym. Chem. 2021, 12 ( 13), 1957- 1966, 10.1039/D0PY01580F
Wei, Z.; Jin, C.; Xu, Q.; Leng, X.; Wang, Y.; Li, Y. Synthesis, Microstructure and Mechanical Properties of Partially Biobased Biodegradable Poly (Ethylene Brassylate- Co - ϵ -Caprolactone) Copolyesters. J. Mech. Behav. Biomed. Mater. 2019, 91, 255- 265, 10.1016/j.jmbbm.2018.12.019
Fernández, J.; Amestoy, H.; Sardon, H.; Aguirre, M.; Varga, A. L.; Sarasua, J.-R. Effect of molecular weight on the physical properties of poly(ethylene brassylate) homopolymers. J. Mech. Behav. Biomed. Mater. 2016, 64, 209- 219, 10.1016/j.jmbbm.2016.07.031
Wang, X.; Zhao, W.; Liu, H.; Han, M.; Zhang, C.; Zhang, X.; Wang, F. Potassium phenoxides bearing bulky yet flexible substituents as highly active catalysts for ring opening polymerization of biobased macrolactone of ethylene brassylate. Eur. Polym. J. 2024, 211, 112993 10.1016/j.eurpolymj.2024.112993
Liu, L.; Zhang, C.; Zhang, X.; Liu, H.; Wang, F. Efficient and well-controlled ring opening polymerization of biobased ethylene brassylate by α-diimine FeCl3 catalysts via a coordination-insertion mechanism. Dalton Trans. 2023, 52, 17104- 17108, 10.1039/D3DT02918B
Pascual, A.; Sardon, H.; Veloso, A.; Ruipérez, F.; Mecerreyes, D. Organocatalyzed Synthesis of Aliphatic Polyesters from Ethylene Brassylate: A Cheap and Renewable Macrolactone. ACS Macro Lett. 2014, 3 ( 9), 849- 853, 10.1021/mz500401u
Pascual, A.; Sardón, H.; Ruipérez, F.; Gracia, R.; Sudam, P.; Veloso, A.; Mecerreyes, D. Experimental and Computational Studies of Ring-Opening Polymerization of Ethylene Brassylate Macrolactone and Copolymerization with ϵ-Caprolactone and TBD-Guanidine Organic Catalyst. J. Polym. Sci., Part A: Polym. Chem. 2015, 53 ( 4), 552- 561, 10.1002/pola.27473
Kim, S.; Chung, H. Synthesis and Characterization of Lignin-Graft-Poly(Ethylene Brassylate): A Biomass-Based Polyester with High Mechanical Properties. ACS Sustainable Chem. Eng. 2021, 9 ( 44), 14766- 14776, 10.1021/acssuschemeng.1c04334
Pronoitis, C.; Hua, G.; Hakkarainen, M.; Odelius, K. Biobased Polyamide Thermosets: From a Facile One-Step Synthesis to Strong and Flexible Materials. Macromolecules 2019, 52, 6181- 6191, 10.1021/acs.macromol.9b00359
Kobayashi, S.; Makino, A. Enzymatic Polymer Synthesis: An Opportunity for Green Polymer Chemistry. Chem. Rev. 2009, 109 ( 11), 5288- 5353, 10.1021/cr900165z
Spinella, S.; Ganesh, M.; Lo Re, G.; Zhang, S.; Raquez, J. M.; Dubois, P.; Gross, R. A. Enzymatic Reactive Extrusion: Moving towards Continuous Enzyme-Catalysed Polyester Polymerisation and Processing. Green Chem. 2015, 17 ( 8), 4146- 4150, 10.1039/C5GC00992H
Avella, A.; Rafi, A. A.; Deiana, L.; Mincheva, R.; Cordova, A.; Lo Re, G. Organo-Mediated Ring-Opening Polymerization of Ethylene Brassylate in Reactive Extrusion with Cellulose Nanofibrils. ACS Sustainable Chem. Eng. 2024, 12, 10727- 10738, 10.1021/acssuschemeng.4c01309
Adibi, A.; Trinh, B. M.; Mekonnen, T. H. Recent Progress in Sustainable Barrier Paper Coating for Food Packaging Applications. Prog. Org. Coatings 2023, 181, 107566 10.1016/j.porgcoat.2023.107566
Trache, D.; Hussin, M. H.; Hui Chuin, C. T.; Sabar, S.; Fazita, M. R. N.; Taiwo, O. F. A.; Hassan, T. M.; Haafiz, M. K. M. Microcrystalline Cellulose: Isolation, Characterization and Bio-Composites Application-A Review. Int. J. Biol. Macromol. 2016, 93, 789- 804, 10.1016/J.IJBIOMAC.2016.09.056
Casas, J.; Persson, P. V.; Iversen, T.; Córdova, A. Direct Organocatalytic Ring-Opening Polymerizations of Lactones. Adv. Synth. Catal. 2004, 346 ( 9-10), 1087- 1089, 10.1002/adsc.200404082
Hanton, S. D. Mass Spectrometry of Polymers and Polymer Surfaces. Chem. Rev. 2001, 101 ( 2), 527- 570, 10.1021/cr9901081
Córdova, A.; Iversen, T.; Hult, K. Lipase-Catalyzed Synthesis of Methyl 6-O-Poly(ϵ-Caprolactone)Glycopyranosides. Macromolecules 1998, 31 ( 4), 1040- 1045, 10.1021/ma971297x