[en] Conjugated sequence-defined polymers represent a cutting-edge area of polymer science, merging the precision of biological macromolecules with the versatility of synthetic polymers and the unique properties of conjugated systems. While early reports focused on activation/deactivation strategies, this Letter presents the first orthogonal approach to developing sequence-defined conjugated macromolecules (CMs), incorporating a new monomer at each reaction step. In CMs, the primary monomer sequence meticulously determines the optoelectronic properties. Step-by-step, features such as structural defects, chain length, dispersity, functional groups, topology, and monomers used in the backbone are carefully considered and controlled, with optical data provided to support the necessity of sequence-defined approaches in CMs. Additionally, a pioneering and repeatable modular approach is introduced, connecting different orthogonally developed sequences. This method enhances efficiency and accelerates the synthesis process, facilitating comprehensive structure-property analyses and paving the way for tunable materials with record-breaking properties.
Disciplines :
Chemistry
Author, co-author :
Milis, Wout; Laboratory for Polymer Synthesis, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
Peeters, Janine; Laboratory for Polymer Synthesis, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
Erkens, Robin; Laboratory for Polymer Synthesis, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
DE WINTER, Julien ; Université de Mons - UMONS > Faculté des Sciences > Service de Synthèse et spectrométrie de masse organiques
GERBAUX, Pascal ; Université de Mons - UMONS > Faculté des Sciences > Service de Synthèse et spectrométrie de masse organiques
Koeckelberghs, Guy ; Laboratory for Polymer Synthesis, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
Language :
English
Title :
Versatile Strategy to Develop Sequence-Defined Conjugated Macromolecules: A Powerful Tool toward Tunable Optoelectronic Properties.
Müllen, K.; Scherf, U. Conjugated Polymers: Where We Come From, Where We Stand, and Where We Might Go. Macromol. Chem. Phys. John Wiley & Sons, Ltd., 2023; p 2200337.
Swager, T. M. 50th Anniversary Perspective: Conducting/Semiconducting Conjugated Polymers. A Personal Perspective on the Past and the Future 2017, 50 ( 13), 4867- 4886, 10.1021/acs.macromol.7b00582
Allard, S.; Forster, M.; Souharce, B.; Thiem, H.; Scherf, U. Organic Semiconductors for Solution-Processable Field-Effect Transistors (OFETs). Angew. Chem., Int. Ed. 2008, 47 ( 22), 4070- 4098, 10.1002/anie.200701920
Wei, Q.; Ge, Z.; Voit, B. Thermally Activated Delayed Fluorescent Polymers: Structures, Properties, and Applications in OLED Devices. Macromol. Rapid Commun. John Wiley & Sons, Ltd., 2019; p 1800570.
Facchetti, A. π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications. Chem. Mater. 2011, 23 ( 3), 733- 758, 10.1021/cm102419z
Coakley, K. M.; McGehee, M. D. Conjugated Polymer Photovoltaic Cells. Chem. Mater. 2004, 16 ( 23), 4533- 4542, 10.1021/cm049654n
Yao, C. J.; Zhang, H. L.; Zhang, Q. Recent Progress in Thermoelectric Materials Based on Conjugated Polymers. Polymers 2019, Vol. 11, Page 107 2019, 11 ( 1), 107, 10.3390/polym11010107
Wang, S.; Zuo, G.; Kim, J.; Sirringhaus, H. Progress of Conjugated Polymers as Emerging Thermoelectric Materials. Prog. Polym. Sci. 2022, 129, 101548 10.1016/j.progpolymsci.2022.101548
Van Cleuvenbergen, S.; Asselberghs, I.; Vanormelingen, W.; Verbiest, T.; Franz, E.; Clays, K.; Kuzyk, M. G.; Koeckelberghs, G. Record-High Hyperpolarizabilities in Conjugated Polymers. Journal of Materials Chemistry C 2014, 2 ( 23), 4533- 4538, 10.1039/C4TC00616J
Merrifield, R. B. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J. Am. Chem. Soc. 1963, 85 ( 14), 2149- 2154, 10.1021/ja00897a025
Vandenbergh, J.; Reekmans, G.; Adriaensens, P.; Junkers, T. Synthesis of Sequence-Defined Acrylate Oligomers via Photo-Induced Copper-Mediated Radical Monomer Insertions. Chemical Science 2015, 6 ( 10), 5753- 5761, 10.1039/C5SC02035B
Xu, J.; Fu, C.; Shanmugam, S.; Hawker, C. J.; Moad, G.; Boyer, C. Synthesis of Discrete Oligomers by Sequential PET-RAFT Single-Unit Monomer Insertion. Angewandte Chemie - International Edition 2017, 56 ( 29), 8376- 8383, 10.1002/anie.201610223
Xu, J. Single Unit Monomer Insertion: A Versatile Platform for Molecular Engineering through Radical Addition Reactions and Polymerization. Macromolecules 2019, 52 ( 23), 9068- 9093, 10.1021/acs.macromol.9b01365
Houshyar, S.; Keddie, D. J.; Moad, G.; Mulder, R. J.; Saubern, S.; Tsanaktsidis, J. The Scope for Synthesis of Macro-RAFT Agents by Sequential Insertion of Single Monomer Units. Polym. Chem. 2012, 3 ( 7), 1879- 1889, 10.1039/c2py00529h
Oh, D.; Ouchi, M.; Nakanishi, T.; Ono, H.; Sawamoto, M. Iterative Radical Addition with a Special Monomer Carrying Bulky and Convertible Pendant: A New Concept toward Controlling the Sequence for Vinyl Polymers. ACS Macro Lett. 2016, 5 ( 6), 745- 749, 10.1021/acsmacrolett.6b00359
Dong, R.; Liu, R.; Gaffney, P. R. J.; Schaepertoens, M.; Marchetti, P.; Williams, C. M.; Chen, R.; Livingston, A. G. Sequence-Defined Multifunctional Polyethers via Liquid-Phase Synthesis with Molecular Sieving. Nat. Chem. 2019, 11 ( 2), 136- 145, 10.1038/s41557-018-0169-6
Solleder, S. C.; Zengel, D.; Wetzel, K. S.; Meier, M. A. R. A Scalable and High-Yield Strategy for the Synthesis of Sequence-Defined Macromolecules. Angewandte Chemie - International Edition 2016, 55 ( 3), 1204- 1207, 10.1002/anie.201509398
Barnes, J. C.; Ehrlich, D. J. C.; Gao, A. X.; Leibfarth, F. A.; Jiang, Y.; Zhou, E.; Jamison, T. F.; Johnson, J. A. Iterative Exponential Growth of Stereo- and Sequence-Controlled Polymers. Nature Chemistry 2015 7:10 2015, 7 ( 10), 810- 815, 10.1038/nchem.2346
Takizawa, K.; Tang, C.; Hawker, C. J. Molecularly Defined Caprolactone Oligomers and Polymers: Synthesis and Characterization. J. Am. Chem. Soc. 2008, 130 ( 5), 1718- 1726, 10.1021/ja077149w
Pfeifer, S.; Zarafshani, Z.; Badi, N.; Lutz, J. F. Liquid-Phase Synthesis of Block Copolymers Containing Sequence-Ordered Segments. J. Am. Chem. Soc. 2009, 131 ( 26), 9195- 9197, 10.1021/ja903635y
Solleder, S. C.; Meier, M. A. R. Sequence Control in Polymer Chemistry through the Passerini Three-Component Reaction. Angewandte Chemie - International Edition 2014, 53 ( 3), 711- 714, 10.1002/anie.201308960
Porel, M.; Alabi, C. A. Sequence-Defined Polymers via Orthogonal Allyl Acrylamide Building Blocks Scheme 1. Fluorous Assisted Sequence Control via Allyl Acrylamides and Dithiols. J. Am. Chem. Soc. 2014, 136, 13162, 10.1021/ja507262t
Zuckermann, R. N.; Kerr, J. M.; Kent, S. B. H.; Moos, W. H. Efficient Method for the Preparation of Peptoids [Oligo(N-Substituted Glycines)] by Submonomer Solid-Phase Synthesis. J. Am. Chem. Soc. 1992, 114, 10646- 10647, 10.1021/ja00052a076
Espeel, P.; Carrette, L. L. G.; Bury, K.; Capenberghs, S.; Martins, J. C.; Duprez, F. E.; Madder, A. Multifunctionalized Sequence-Defined Oligomers from a Single Building Block. Angewandte Chemie - International Edition 2013, 52 ( 50), 13261- 13264, 10.1002/anie.201307439
Yokoyama, A.; Miyakoshi, R.; Yokozawa, T. Chain-Growth Polymerization for Poly(3-Hexylthiophene) with a Defined Molecular Weight and a Low Polydispersity. Macromolecules 2004, 37, 1169- 1171, 10.1021/ma035396o
Sheina, E. E.; Liu, J.; Iovu, M. C.; Laird, D. W.; McCullough, R. D. Chain Growth Mechanism for Regioregular Nickel-Initiated Cross-Coupling Polymerizations. Macromolecules 2004, 37 ( 10), 3526- 3528, 10.1021/ma0357063
Yu, H.; Li, S.; Schwieter, K. E.; Liu, Y.; Sun, B.; Moore, J. S.; Schroeder, C. M. Charge Transport in Sequence-Defined Conjugated Oligomers. J. Am. Chem. Soc. 2020, 142 ( 10), 4852- 4861, 10.1021/jacs.0c00043
Yin, J.; Choi, S.; Pyle, D.; Guest, J. R.; Dong, G. Backbone Engineering of Monodisperse Conjugated Polymers via Integrated Iterative Binomial Synthesis. J. Am. Chem. Soc. 2023, 145 ( 34), 19120- 19128, 10.1021/jacs.3c08143
Norris, B. N.; Pan, T.; Meyer, T. Y. Iterative Synthesis of Heterotelechelic Oligo(Phenylene-Vinylene)s by Olefin Cross-Metathesis. Org. Lett. 2010, 12 ( 23), 5514- 5517, 10.1021/ol102398y
Xu, C.; He, C.; Li, N.; Yang, S.; Du, Y.; Matyjaszewski, K.; Pan, X. Regio- and Sequence-Controlled Conjugated Topological Oligomers and Polymers via Boronate-Tag Assisted Solution-Phase Strategy. Nat. Commun. 2021, 12 ( 1), 5853, 10.1038/s41467-021-26186-y
Szweda, R.; Chendo, C.; Charles, L.; Baxter, P. N. W.; Lutz, J. F. Synthesis of Oligoarylacetylenes with Defined Conjugated Sequences Using Tailor-Made Soluble Polymer Supports. Chem. Commun. 2017, 53 ( 59), 8312- 8315, 10.1039/C7CC03633G
Schneider, R. V.; Waibel, K. A.; Arndt, A. P.; Lang, M.; Seim, R.; Busko, D.; Bräse, S.; Lemmer, U.; Meier, M. A. R. Sequence-Definition in Stiff Conjugated Oligomers. Sci. Rep. 2018, 8 ( 1), 1- 8, 10.1038/s41598-018-35933-z
Jørgensen, M.; Krebs, F. C. Stepwise and Directional Synthesis of End-Functionalized Single-Oligomer OPVs and Their Application in Organic Solar Cells. J. Org. Chem. 2004, 69 ( 20), 6688- 6696, 10.1021/jo049111x
Iwadate, N.; Suginome, M. Synthesis of B-Protected β-Styrylboronic Acids via Iridium-Catalyzed Hydroboration of Alkynes with 1,8-Naphthalenediaminatoborane Leading to Iterative Synthesis of Oligo(Phenylenevinylene)S. Org. Lett. 2009, 11 ( 9), 1899- 1902, 10.1021/ol9003096
Pearson, D. L.; Schumm, J. S.; Tour, J. M. Iterative Divergent/Convergent Approach to Conjugated Oligomers by a Doubling of Molecular Length at Each Iteration. A Rapid Route to Potential Molecular Wires. Macromolecules 1994, 27 ( 8), 2348- 2350, 10.1021/ma00086a062
Schumm, J. S.; Pearson, D. L.; Tour, J. M. Iterative Divergent/Convergent Approach to Linear Conjugated Oligomers by Successive Doubling of the Molecular Length: A Rapid Route to a 128Å-Long Potential Molecular Wire. Angewandte Chemie International Edition in English 1994, 33 ( 13), 1360- 1363, 10.1002/anie.199413601
Mills, H. A.; Rahman, S.; Zigelstein, R.; Xu, H.; Varju, B. R.; Bender, T. P.; Wilson, M. W. B.; Seferos, D. S. Sequence-Defined Conjugated Oligomers in Donor-Acceptor Dyads. J. Am. Chem. Soc. 2023, 145 ( 43), 23519- 23526, 10.1021/jacs.3c06923
Xu, H.; Ye, S.; Zhao, R.; Seferos, D. S. Homogeneous Synthesis of Monodisperse Sequence-Defined Conjugated Oligomers by Temperature Cycling. Angew. Chem., Int. Ed. 2022, 61 ( 39), e202210340 10.1002/anie.202210340
Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chem. Rev. 1995, 95 ( 7), 2457- 2483, 10.1021/cr00039a007
Wadsworth, W. S.; Emmons, W. D. The Utility of Phosphonate Carbanions in Olefin Synthesis. J. Am. Chem. Soc. 1961, 83 ( 7), 1733- 1738, 10.1021/ja01468a042
Koeckelberghs, G.; De Cremer, L.; Persoons, A.; Verbiest, T. Influence of the Substituent and Polymerization Methodology on the Properties of Chiral Poly(Dithieno[3,2-b:2′,3′-d]Pyrrole)S. Macromolecules 2007, 40 ( 12), 4173- 4181, 10.1021/ma062808v
Ogawa, K.; Rasmussen, S. C. N-Functionalized Poly(Dithieno[3,2-b:2′,3′-d]Pyrrole)s: Highly Fluorescent Materials with Reduced Band Gaps. Macromolecules 2006, 39 ( 5), 1771- 1778, 10.1021/ma052490r