Absorption-based carbon capture energy penalty reduction for low CO2 content applications: Comparison of performance using different solvents and process configurations on micro gas turbine application
VERHAEGHE, Antoine ; Université de Mons - UMONS > Faculté Polytechnique > Service de Génie des Procédés chimiques et biochimiques
DUBOIS, Lionel ; Université de Mons - UMONS > Faculté Polytechnique > Service de Génie des Procédés chimiques et biochimiques
Bricteux, Laurent ; Université de Mons - UMONS > Faculté Polytechnique > Service des Fluides-Machines
THOMAS, Diane ; Université de Mons - UMONS > Faculté Polytechnique > Service de Génie des Procédés chimiques et biochimiques
DE PAEPE, Ward ; Université de Mons - UMONS > Faculté Polytechnique > Service de Thermique et Combustion
Language :
English
Title :
Absorption-based carbon capture energy penalty reduction for low CO2 content applications: Comparison of performance using different solvents and process configurations on micro gas turbine application
Elia, Belgium's 2022 electricity mix: the increase in renewable enery and availability of nuclear power plants kept exports high. 2022 https://www.elia.be/en/news/press-releases/2023/01/20230106_energymix2022. [Accessed: 01 June 2023].
Pickard, W.F., Abbott, D., Addressing the intermittency challenge: Massive energy storage in a sustainable future. Proc IEEE 100:2 (2012), 317–321, 10.1109/JPROC.2011.2174892.
Gülen, S.C., W.F., Gas turbines for electric power generation. 2019, Cambridge University Press.
European Union, W.F., 2050 long-term strategy — Climate Action. 2021 https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2050-long-term-strategy_en. [Accessed: 01 June 2023].
Martinez, F.R., Martinez, A.R., Velzaquez, M.T., Diez, Q.P., Eslava, G.T., Francis, J.A., Evaluation of the gas turbine inlet temperature with relation to the excess air. Energy Power Eng 3 (2011), 517–524, 10.4236/epe.2011.34063.
Diego, M.E., Akram, M., Bellas, J.-M., Finney, K.N., Pourkashanian, M., Making gas-CCS a commercial reality: The challenges of scaling up. Greenh Gases: Sci Technol 7:5 (2017), 778–801, 10.1002/ghg.1695.
Wang, X., Song, C., Carbon capture from flue gas and the atmosphere: A perspective. Front Energy Res, 8, 2020, 10.3389/fenrg.2020.560849.
Leung, D.Y., Caramanna, G., Maroto-Valer, M.M., An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev 39 (2014), 426–443, 10.1016/j.rser.2014.07.093.
Said, R.B., Kolle, J.M., Essalah, K., Tangour, B., Sayari, A., A unified approach to CO2–Amine Reaction Mechanisms. ACS Omega 5:40 (2020), 26125–26133, 10.1021/acsomega.0c03727 PMID: 33073140.
Ying, J., Raets, S., Eimer, D., The activator mechanism of piperazine in aqueous methyldiethanolamine solutions. Energy Procedia 114 (2017), 2078–2087, 10.1016/j.egypro.2017.03.1342 13th International Conference on Greenhouse Gas Control Technologies, GHGT-13, 14-18 November 2016, Lausanne, Switzerland.
Choubtashani, S., Rashidi, H., CO2 capture process intensification of water-lean methyl diethanolamine-piperazine solvent: Experiments and response surface modeling. Energy, 267, 2023, 126447, 10.1016/j.energy.2022.126447.
Li, K., Cousins, A., Yu, H., Feron, P., Tade, M., Luo, W., et al. Systematic study of aqueous monoethanolamine-based CO2 capture process: model development and process improvement. Energy Sci Eng 4:1 (2016), 23–39, 10.1002/ese3.101.
Zhao, B., Liu, F., Cui, Z., Liu, C., Yue, H., Tang, S., et al. Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650 MW power plant: Process improvement. Appl Energy 185 (2017), 362–375, 10.1016/j.apenergy.2016.11.009.
Mudhasakul, S., ming Ku, H., Douglas, P.L., A simulation model of a CO2 absorption process with methyldiethanolamine solvent and piperazine as an activator. Int J Greenh Gas Control 15 (2013), 134–141, 10.1016/j.ijggc.2013.01.023.
Sema, T., Liang, Z.Z.-w., Chen, G., Tontiwachwuthikul, P., A novel reactive 4-diethylamino-2-butanol solvent for capturing CO2 in the aspect of absorption capacity, cyclic capacity, mass transfer, and reaction kinetics. Energy Procedia 37 (2013), 477–484, 10.1016/j.egypro.2013.05.133.
Ibrahim, A.Y., Ashour, F.H., Ghallab, A.O., Ali, M., Effects of piperazine on carbon dioxide removal from natural gas using aqueous methyl diethanol amine. J Nat Gas Sci Eng 21 (2014), 894–899, 10.1016/j.jngse.2014.10.011.
Derks, P.W., Kleingeld, T., van Aken, C., Hogendoorn, J.A., Versteeg, G.F., Kinetics of absorption of carbon dioxide in aqueous piperazine solutions. Chem Eng Sci 61:20 (2006), 6837–6854, 10.1016/j.ces.2006.07.009.
Li, K., Leigh, W., Feron, P., Yu, H., Tade, M., Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements. Appl Energy 165 (2016), 648–659, 10.1016/j.apenergy.2015.12.109.
Khan, B.A., Ullah, A., Saleem, M.W., Khan, A.N., Faiq, M., Haris, M., Energy minimization in piperazine promoted MDEA-based CO2 capture process. Sustainability, 12, 2020, 8524, 10.3390/su12208524.
Dubois, L., Thomas, D., Comparison of various configurations of the absorption-regeneration process using different solvents for the post-combustion CO2 capture applied to cement plant flue gases. Int J Greenh Gas Control 69 (2018), 20–35, 10.1016/j.ijggc.2017.12.004.
Otitoju, O., Oko, E., Wang, M., Technical and economic performance assessment of post-combustion carbon capture using piperazine for large scale natural gas combined cycle power plants through process simulation. Appl Energy, 292, 2021, 116893, 10.1016/j.apenergy.2021.116893.
Singh, A., Stéphenne, K., Shell Cansolv CO2 capture technology: Achievement from first commercial plant. Energy Procedia 63 (2014), 1678–1685, 10.1016/j.egypro.2014.11.177.
Hosseini-Ardali, S.M., Hazrati-Kalbibaki, M., Fattahi, M., Lezsovits, F., Multi-objective optimization of post combustion CO2 capture using methyldiethanolamine (MDEA) and piperazine (PZ) bi-solvent. Energy, 211, 2020, 119035, 10.1016/j.energy.2020.119035.
Romeo, L., Minguell, D., Shirmohammadi, R., Andrés, J., Comparative analysis of the efficiency penalty in power plants of different amine-based solvents for CO2 capture. Ind Eng Chem Res, 2020, 10.1021/acs.iecr.0c01483.
Le Moullec, Y., Neveux, T., Al Azki, A., Chikukwa, A., Hoff, K.A., Process modifications for solvent-based post-combustion CO2 capture. Int J Greenh Gas Control 31 (2014), 96–112, 10.1016/j.ijggc.2014.09.024.
Oh, H.-T., Ju, Y., Chung, K., Lee, C.-H., Techno-economic analysis of advanced stripper configurations for post-combustion CO2 capture amine processes. Energy, 206, 2020, 118164, 10.1016/j.energy.2020.118164.
De Paepe, W., Carrero, M.M., Giorgetti, S., Parente, A., Bram, S., Contino, F., Exhaust gas recirculation on humidified flexible micro gas turbines for carbon capture applications. Turbo Expo: Power Land, Sea, Air, 3, 2016, 10.1115/GT2016-57265 V003T06A011.
Aspen Tech, W., Aspen Plus. 2023 https://www.aspentech.com/en/products/engineering/aspen-plus.
Giorgetti, S., Parente, A., Contino, F., Bricteux, L., De Paepe, W., Humidified micro gas turbine for carbon capture applications: Preliminary experimental results with CO2 injection. Turbo expo: power for land, sea, and air Coal, Biomass, and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems, vol. 3, 2018, 10.1115/GT2018-77265 V003T06A024.
Thielens, V., Demeyer, F., Geigle, K.P., Kutne, P., De Paepe, W., Experimental investigation of the emissions and performance of a micro gas turbine setup with enhanced EGR. Appl Therm Eng, 267, 2025, 125673, 10.1016/j.applthermaleng.2025.125673.
Ditaranto, M., Todalshaug, J., Bjørge, T., Investigation on the in-flame NO reburning in turbine exhaust gas. Proc Combust Inst 32 (2009), 2659–2666, 10.1016/j.proci.2008.07.002.
UKCCSRC, M., Pilot-scale Advanced Capture Technology (PACT). 2016 https://ukccsrc.ac.uk/.
Chen, C.-C., Evans, L.B., A local composition model for the excess gibbs energy of aqueous electrolyte systems. AIChE J 32:3 (1986), 444–454, 10.1002/aic.690320311.
Zhang, Y., Que, H., Chen, C.C., Thermodynamic modeling for CO2 absorption in aqueous MEA solution with electrolyte NRTL model. Fluid Phase Equilib 311:1 (2011), 67–75, 10.1016/j.fluid.2011.08.025.
Zhang, Y., Chen, C.-C., Thermodynamic modeling for CO2 absorption in aqueous MDEA solution with electrolyte NRTL model. Ind Eng Chem Res 50:1 (2011), 176–187, 10.1016/j.fluid.2011.08.025.
Dubois, L., Thomas, D., Investigation of process configurations for the post-combustion CO2 capture applied to cement plant flue gases. Proceedings of the 15th Greenhouse Gas Control Technologies Conference 15- 18 March 2021, 2021 Available at SSRN: https://ssrn.com/abstract=3811331.
Zhang, Y., Chen, H., Chen, C.C., Plaza, J.M., Dugas, R., Rochelle, G.T., Rate-based process modeling study of CO2 Capture with aqueous monoethanolamine solution. Ind Eng Chem Res 48:20 (2009), 9233–9246, 10.1021/ie900068k.
Agbonghae, E.O., Best, T., Finney, K.N., Palma, C.F., Hughes, K.J., Pourkashanian, M., Experimental and process modelling study of integration of a micro-turbine with an amine plant. Energy Procedia 63 (2014), 1064–1073, 10.1016/j.egypro.2014.11.114.
Hanley, B., Chen, C.-C., New mass-transfer correlations for packed towers. AIChE J 58:1 (2012), 132–152, 10.1002/aic.12574.
Verhaeghe, A., Dubois, L., Bricteux, L., Thomas, D., Blondeau, J., De Paepe, W., Carbon capture performance assessment applied to combined cycle gas turbine under part-load operation. J Eng Gas Turbines Power, 145(4), 2023, 041009, 10.1115/1.4055664.
Mouhoubi, S., Dubois, L., Loldrup Fosbøl, P., De Weireld, G., Thomas, D., Thermodynamic modeling of CO2 absorption in aqueous solutions of N,N-diethylethanolamine (DEEA) and N-methyl-1,3-propanediamine (MAPA) and their mixtures for carbon capture process simulation. Chem Eng Res Des 158 (2020), 46–63, 10.1016/j.cherd.2020.02.029.
Giorgetti, S., Bricteux, L., Parente, A., Blondeau, J., Contino, F., De Paepe, W., Carbon capture on micro gas turbine cycles: Assessment of the performance on dry and wet operations. Appl Energy 207 (2017), 243–253, 10.1016/j.apenergy.2017.06.090.
Elkady, A., Evulet, A., Brand, A., Ursin, T., Lynghjem, A., Application of exhaust gas recirculation in a DLN F-class combustion system for postcombustion carbon capture. J Eng Gas Turbines Power, 131, 2009, 034505, 10.1115/1.2982158.
Warudkar, S.S., Cox, K.R., Wong, M.S., Hirasaki, G.J., Influence of stripper operating parameters on the performance of amine absorption systems for post-combustion carbon capture: Part I. High pressure strippers. Int J Greenh Gas Control 16 (2013), 1–9, 10.1016/j.ijggc.2013.01.050.
Biliyok, C., Yeung, H., Evaluation of natural gas combined cycle power plant for post-combustion CO2 capture integration. Int J Greenh Gas Control 19 (2013), 396–405, 10.1016/j.ijggc.2013.10.003.
Verdonck, D., Dubois, L., De Weireld, G., Thomas, D., Methodological selection of demixing liquid–liquid solvents used in the absorption–regeneration carbon capture process. Ind Eng Chem Res, 2025, 10.1021/acs.iecr.4c04342.
Giorgetti, S., Parente, A., Bricteux, L., Contino, F., De Paepe, W., Optimal design and operating strategy of a carbon-clean micro gas turbine for combined heat and power applications. Int J Greenh Gas Control 88 (2019), 469–481, 10.1016/j.ijggc.2019.07.003.
Closmann, F., Nguyen, T., Rochelle, G.T., MDEA/Piperazine as a solvent for CO2 capture. Energy Procedia 1:1 (2009), 1351–1357, 10.1016/j.egypro.2009.01.177 Greenhouse Gas Control Technologies 9.
Gunasekaran, P., Veawab, A., Aroonwilas, A., Corrosivity of single and blended amines in CO2 capture process. Energy Procedia 37 (2013), 2094–2099, 10.1016/j.egypro.2013.06.088 GHGT-11 Proceedings of the 11th International Conference on Greenhouse Gas Control Technologies, 18-22 November 2012, Kyoto, Japan.
Duval-Dachary, S., Beauchet, S., Lorne, D., Salou, T., Helias, A., Pastor, A., Life cycle assessment of bioenergy with carbon capture and storage systems: Critical review of life cycle inventories. Renew Sustain Energy Rev, 183, 2023, 113415, 10.1016/j.rser.2023.113415.
Akan, A.P., Chau, J., Gullu, G., Sirkar, K.K., Life cycle assessment of post-combustion CO2 capture and recovery by hydrophobic polypropylene cross-flow hollow fiber membrane contactors with activated methyldiethanolamine. Atmosphere, 14(3), 2023, 10.3390/atmos14030490.
Dubois, L., Costa, A., Mouhoubi, S., De Weireld, G., Thomas, D., Post-combustion CO2 capture process by absorption-regeneration applied to cement plant flue gases: techno-economic comparison between the use of a demixing solvent technology and an advanced process configuration. Proceedings of the 16th Greenhouse Gas Control Technologies Conference, GHGT-16, 2022, 10.2139/ssrn.4271986.
Ding, X., Chen, H., Li, J., Zhou, T., Comparative techno-economic analysis of CO2 capture processes using blended amines. Carbon Capture Sci Technol, 9, 2023, 100136, 10.1016/j.ccst.2023.100136.
Tiwari, S.C., Agarwal, M., Pant, K.K., Upadhyayula, S., A comparative study of polyamine and piperazine as promoter for CO2 absorption performance in aqueous methyldiethanolamine blend system: 430 MW power plant data simulation and economic assessment. Sustain Chem Environ, 4, 2023, 100054, 10.1016/j.scenv.2023.100054.