[en] Developing a nanocomposite that combines the stiffness of hydroxyapatite (HA), a bone-mimicking mineral, with the flexibility, and resorbability of polylactic Acid (PLA), a biodegradable polyester, presents significant potential in bone regeneration applications. The cold sintering process (CSP) offers a novel approach for consolidating HA-PLA composite at low temperatures, addressing the co-sintering challenge posed by higher consolidation temperatures requirement for HA compared to PLA’s compaction, or extrusion temperatures. This study investigates the effect of HA-to-PLA ratios and the plasticizing effect of PLA on the composite's consolidation behavior and mechanical properties, with a specific focus on HA consolidation within the PLA matrix under CSP conditions at 200 °C under 360 MPa pressure. Interestingly, the results revealed that the HA consolidation in composite matrix changes with PLA content and the plasticizing effect has a crucial role in enhancing this consolidation. An optimal HA-to-PLA weight ratio of 80:20 yielded superior HA consolidation and strong interfacial bonding between HA particles and HA and PLA, achieving an ideal mechanical strength and structural integrity balance. Overall, the HA-PLA composites exhibit mechanical strength comparable to human cortical bone, making them suitable for potential biomedical applications.
Disciplines :
Materials science & engineering
Author, co-author :
Kumar, Muthusundar ; Université de Mons - UMONS > Faculté des Sciences > Service des Matériaux Polymères et Composites
Ben Achour, Mohamed Aymen
Ölmez, Vedi
Lasgorceix, Marie
Mincheva, Rosica ; Université de Mons - UMONS > Faculté des Sciences > Service des Matériaux Polymères et Composites
Leriche, Anne ; Université de Mons - UMONS > Faculté Polytechnique > FPMs - Service du Doyen
Raquez, Jean-Marie ; Université de Mons - UMONS > Faculté des Sciences > Service des Matériaux Polymères et Composites
Language :
English
Title :
Consolidation behavior of HA-PLA nanocomposites during cold sintering process: Influence of HA-to-PLA ratio and the plasticizing effect of PLA
Raftery, R.M., Castaño, I.M., Chen, G., Cavanagh, B., Quinn, B., Curtin, C.M., Cryan, S.A., O'Brien, F.J., Translating the role of osteogenic-angiogenic coupling in bone formation: highly efficient chitosan-pDNA activated scaffolds can accelerate bone regeneration in critical-sized bone defects. Biomater 149 (2017), 116–127, 10.1016/j.biomaterials.2017.09.036.
Verrier, S., Alini, M., Alsberg, E., Buchman, S.R., Kelly, D., Laschke, M.W., Menger, M.D., Murphy, W.L., Stegemann, J.P., Schütz, M., Miclau, T., Tissue engineering and regenerative approaches to improving the healing of large bone defects. Eur. Cell Mater. 32 (2016), 87–110, 10.22203/ecm.v032a06.
Russias, J., Saiz, E., Nalla, R.K., Gryn, K., Ritchie, R.O., Tomsia, A.P., Fabrication and mechanical properties of PLA/HA composites: a study of in vitro degradation. Mater. Sci. Eng. C. 26 (2006), 1289–1295, 10.1016/j.msec.2005.08.004.
Sui, B.D., Hu, C.H., Liu, A.Q., Zheng, C.X., Xuan, K., Jin, Y., Stem cell-based bone regeneration in diseased microenvironments: challenges and solutions. Biomater 196 (2019), 18–30, 10.1016/j.biomaterials.2017.10.046.
Fiume, E., Magnaterra, G., Rahdar, A., Verne, E., Baino, F., Hydroxyapatite for biomedical applications: a short overview. Ceramics 4 (2021), 542–563, 10.3390/ceramics4040039.
Sha, L., Chen, Z., Chen, Z., Zhang, A., Yang, Z., Polylactic acid based nanocomposites: promising safe and biodegradable materials in the biomedical field. Int. J. Polym. Sci., 2016, 2016, 6869154, 10.1155/2016/6869154.
Lee, H., Shin, D.Y., Na, Y., Han, G., Kim, J., Kim, N., Bang, S.J., Kang, H.S., Oh, S., Yoon, C.B., Park, J., Antibacterial PLA/Mg composite with enhanced mechanical and biological performance for biodegradable orthopedic implants. Biomater. Adv., 152, 2023, 213523, 10.1016/j.bioadv.2023.213523.
Lee, H., Shin, D.Y., Bang, S.J., Han, G., Na, Y., Kang, H.S., Oh, S., Yoon, C.B., Vijayavenkataraman, S., Song, J., Kim, H.E., A strategy for enhancing bioactivity and osseointegration with antibacterial effect by incorporating magnesium in polylactic acid based biodegradable orthopedic implant. Int. J. Biol. Macromol., 254, 2024, 127797, 10.1016/j.ijbiomac.2023.127797.
Feng, L., Zhang, B., Bian, X., Li, G., Chen, Z., Chen, X., Thermal properties of polylactides with different stereoisomers of lactides used as comonomers. Macromolecules 50 (2017), 6064–6073 〈https://pubs.acs.org/doi/abs/10.1021/acs.macromol.7b00818〉.
Sun, H., Ai, M., Zhu, S., Jia, X., Cai, Q., Yang, X., Polylactide–hydroxyapatite nanocomposites with highly improved interfacial adhesion via mussel-inspired polydopamine surface modification. RSC Adv. 5 (2015), 95631–95642, 10.1039/C5RA21010K.
Ferri, J., Jordá, M.J., Montanes, N., Fenollar, O., Balart, R., Manufacturing and characterization of poly (lactic acid) composites with hydroxyapatite. J. Thermoplas. Compos. Mater. 31 (2018), 865–881, 10.1177/0892705717729014.
Homaeigohar, S.S., Sadi, A.Yari, Javadpour, J., Khavandi, A., The effect of reinforcement volume fraction and particle size on the mechanical properties of β-tricalcium phosphate–high density polyethylene composites. J. Eur. Ceram. Soc. 26 (2006), 273–278, 10.1016/j.jeurceramsoc.2004.10.003.
Supova, M., Problem of hydroxyapatite dispersion in polymer matrices: a review. J. Mater. Sci.: Mater. Med. 20 (2009), 1201–1213, 10.1007/s10856-009-3696-2.
Carette, X., Dhond, L., Hemberg, A., Thiry, D., Mincheva, R., Cailloux, J., Santana Perez, O., Cossement, D., Dubus, M., Kerdjoudj, H., Snyders, R., Innovative one-shot paradigm to tune filler–polymer matrix interface properties by plasma polymer coating in osteosynthesis applications. ACS Appl. Bio Mater. 4 (2021), 3067–3078, 10.1021/acsabm.0c01429.
Konopka, K., Boczkowska, A., Batorski, K., Szafran, M., Kurzydłowski, K.J., Microstructure and properties of novel ceramic–polymer composites. Mater. Lett. 58 (2004), 3857–3862, 10.1016/j.matlet.2004.07.025.
Fallon, J.J., McKnight, S.M., Bortner, M.J., Highly loaded fiber filled polymers for material extrusion: A review of current understanding. Addit. Manuf., 30, 2019, 100810, 10.1016/j.addma.2019.100810.
Pietrzykowska, E., Romelczyk-Baishya, B., Wojnarowicz, J., Sokolova, M., Szlazak, K., Swieszkowski, W., Locs, J., Lojkowski, W., Preparation of a ceramic matrix composite made of hydroxyapatite nanoparticles and polylactic acid by consolidation of composite granules. Nanomater, 10, 2020, 1060, 10.3390/nano10061060.
Brouillet, F., Laurencin, D., Grossin, D., Drouet, C., Estournes, C., Chevallier, G., Rey, C., Biomimetic apatite-based composite materials obtained by spark plasma sintering (SPS): physicochemical and mechanical characterizations. J. Mater. Sci. Mater. Med. 26 (2015), 1–11, 10.1007/s10856-015-5553-9.
Guo, H., Guo, J., Baker, A., Randall, C.A., Hydrothermal-assisted cold sintering process: a new guidance for low-temperature ceramic sintering. ACS Appl. Mater. Interfaces 8 (2016), 20909–20915, 10.1021/acsami.6b07481.
Hu, Y., Xia, D., Shen, H., Nan, J., Ma, N., Guo, Z., Wang, X., Jin, Q., Cold sintering constructed in situ drug-loaded high strength HA-PLA composites: potential bone substitution material. Ceram. Int. 49 (2023), 11655–11663, 10.1016/j.ceramint.2022.12.014.
Shen, H.Z., Guo, N., Zhao, L., Shen, P., Role of ion substitution and lattice water in the densification of cold-sintered hydroxyapatite. Scr. Mater. 177 (2020), 141–145, 10.1016/j.scriptamat.2019.10.024.
Kumar, M., Achour, M.A.B., Lasgorceix, M., Quadros, P., Mincheva, R., Raquez, J.M., Leriche, A., Densification of hydroxyapatite through cold sintering process: role of liquid phase chemistry and physical characteristic of HA powder. Open Ceram., 17, 2024, 100566, 10.1016/j.oceram.2024.100566.
Elsawy, M.A., Kim, K.H., Park, J.W., Deep, A., Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew. Sustain. Energy Rev. 79 (2017), 1346–1352, 10.1016/j.rser.2017.05.143.
Lemmouchi, Y., Murariu, M., Santos, A.M.Dos, Amass, A.J., Schacht, E., Dubois, P., Plasticization of poly (lactide) with blends of tributyl citrate and low molecular weight poly (d, l-lactide)-b-poly (ethylene glycol) copolymers. Eur. Polym. J. 45 (2009), 2839–2848, 10.1016/j.eurpolymj.2009.07.006.
Ljungberg, N., Wesslen, B., Tributyl citrate oligomers as plasticizers for poly (lactic acid): thermo-mechanical film properties and aging. Polymer 44 (2003), 7679–7688, 10.1016/j.polymer.2003.09.055.
Pharr, G.M., Oliver, W.C., Brotzen, F.R., On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res. 7 (1992), 613–617, 10.1557/JMR.1992.0613.
Younesi, M., Bahrololoom, M.E., Effect of temperature and pressure of hot pressing on the mechanical properties of PP–HA bio-composites. Mater. Des. 30 (2009), 3482–3488, 10.1016/j.matdes.2009.03.011.
Ignjatovic, N., Suljovrujic, E., Biudinski-Simendic, J., Krakovsky, I., Uskokovic, D., Evaluation of hot-presses hydroxyapatite/poly-L-lactide composite biomaterial characteristics. J. Biomed. Mater. Res. B Appl. Biomater. 71 (2004), 284–294, 10.1002/jbm.b.30093.
Cristea, M., Ionita, D., Iftime, M.M., Dynamic mechanical analysis investigations of PLA-based renewable materials: how are they useful?. Materials, 13, 2020, 5302 https://doi.org/10.3390%2Fma13225302.
Avegnon, K.L.M., Bedke, A.M., Minyard, J.D., Garda, M.R., Delbreilh, L., Vieille, B., Negahban, M., Sealy, M.P., Use of negative thermal expansion to design scaffolds for cultured meat. Mater. Des., 242, 2024, 112992, 10.1016/j.matdes.2024.112992.
Hassouna, F., Raquez, J.M., Addiego, F., Dubois, P., Toniazzo, V., Ruch, D., New approach on the development of plasticized polylactide (PLA): grafting of poly (ethylene glycol)(PEG) via reactive extrusion. Eur. Polym. J. 47 (2011), 2134–2144, 10.1016/j.eurpolymj.2011.08.001.
Li, D., Jiang, Y., Lv, S., Liu, X., Gu, J., Chen, Q., Zhang, Y., Preparation of plasticized poly (lactic acid) and its influence on the properties of composite materials. PLoS One, 13, 2018, e0193520, 10.1371/journal.pone.0193520.
German, R.M., Chapter One – Introduction. Sintering: from Empirical Observations to Scientific Principles, 2014, Butterworth-Heinemann, 1–12, 10.1016/B978-0-12-401682-8.00001-X.
Maier, R.A., In situ observation of the multistep process of cold sintering. J. Am. Ceram. Soc. 107 (2024), 6544–6553, 10.1111/jace.19947.
Puchalski, M., Kwolek, S., Szparaga, G., Chrzanowski, M., Krucińska, I., Investigation of the influence of PLA molecular structure on the crystalline forms (α’and α) and mechanical properties of wet spinning fibres. Polymers, 9, 2017, 18 〈https://www.mdpi.com/2073-4360/9/1/18#〉.
Tábi, T., Hajba, S., Kovács, J.G., Effect of crystalline forms (α′ and α) of poly (lactic acid) on its mechanical, thermo-mechanical, heat deflection temperature and creep properties. Eur. Polym. J. 82 (2016), 232–243, 10.1016/j.eurpolymj.2016.07.024.
Lee, H.W., Insyani, R., Prasetyo, D., Prajitno, H., Sitompul, J., Molecular weight and structural properties of biodegradable PLA synthesized with different catalysts by direct melt polycondensation. J. Eng. Technol. Sci. 47 (2015), 364–373 https://dx.doi.org/10.5614%2Fj.eng.technol.sci.2015.47.4.2.
Muller, J., Jiménez, A., González-Martínez, C., Chiralt, A., Influence of plasticizers on thermal properties and crystallization behaviour of poly (lactic acid) films obtained by compression moulding. Polym. Int. 65 (2016), 970–978, 10.1002/pi.5142.
Rho, J.Y., Tsui, T.Y., Pharr, G.M., Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomater 18 (1997), 1325–1330, 10.1016/S0142-9612(97)00073-2.
Semaan, M., Karam, E., Baron, C., Pithioux, M., Estimation of the elastic modulus of child cortical bone specimens via microindentation. Connect. Tissue Res. 60 (2019), 399–405, 10.1080/03008207.2019.1570170.