Eprint already available on another site (E-prints, Working papers and Research blog)
Modelling and Optimization of Vacuum Pressure Swing Adsorption Co2 Capture Pilot Using Mil-160(Al)
Henrotin, Arnaud; Heymans, Nicolas; Duprez, Marie-Eve et al.
2025
 

Files


Full Text
ssrn-5208365.pdf
Author preprint (1.01 MB)
Download

All documents in ORBi UMONS are protected by a user license.

Send to



Details



Keywords :
CO2 capture; Vacuum pressure swing adsorption; Metal organic framework; Surrogate; Optimization
Abstract :
[en] Global warming, driven by increasing CO2 emissions from fossil fuel combustion, necessitates the development of effective carbon capture technologies. Among various approaches, Vacuum Pressure Swing Adsorption (VPSA) offers an energy-efficient solution for post-combustion CO2 capture, especially in power plants and energy-intensive industries. This work focuses on validating a simulation model using a laboratory VPSA pilot with the Aluminum Metal-Organic Framework (Al-MOF) MIL-160(Al) and optimizing both lab-scale and industrial-scale VPSA pilots through simulation. Process modeling in Aspen Adsorption software simulated a 3-bed 6-step cycle using parameters from experimental adsorption isotherms and breakthrough curves. The simulation model was compared to previous lab-scale VPSA pilot experiments treating a synthetic 15/85 CO2/N2 mixture at 1 Nm³/h, showing mean absolute errors of 1.47% for purity and 3.19% for recovery. Surrogate models, including kriging and artificial neural networks (ANN), were used to optimize recovery and purity of the lab-scale pilot using a genetic algorithm (NSGA-II). The ANN model proved more accurate, especially in determining pareto fronts. The model was extended to an industrial VPSA pilot as part of the MOF4AIR project, designed to treat flue gas of 50 to 100 Nm³/h with three 41 L adsorption columns. Simulations showed that the pilot could achieve 95% purity and recovery for CO2 concentrations ranging from 5 to 15%. The estimated energy consumption and productivity for 15% CO2 gas were 413.19 kWh/tCO2 and 3.03 tCO2/(m³ads.day) at a gas flow rate of 55.62 Nm³/h, demonstrating the technology's potential and competitiveness on a larger scale.
Disciplines :
Chemical engineering
Energy
Author, co-author :
Henrotin, Arnaud  ;  Université de Mons - UMONS > Faculté Polytechnique > Service de Thermodynamique, Physique mathématiques
Heymans, Nicolas  ;  Université de Mons - UMONS > Faculté Polytechnique > Service de Thermodynamique, Physique mathématiques
Duprez, Marie-Eve  ;  Université de Mons - UMONS > Faculté Polytechnique > Service de Thermodynamique, Physique mathématiques
De Weireld, Guy  ;  Université de Mons - UMONS > Faculté Polytechnique > Service de Thermodynamique, Physique mathématiques
Language :
English
Title :
Modelling and Optimization of Vacuum Pressure Swing Adsorption Co2 Capture Pilot Using Mil-160(Al)
Publication date :
07 April 2025
Source :
Development Goals :
7. Affordable and clean energy
Research unit :
F506 - Thermodynamique, Physique mathématiques
Research institute :
R200 - Institut de Recherche en Energie
European Projects :
H2020 - 837975 - MOF4AIR - Metal Organic Frameworks for carbon dioxide Adsorption processes in power production and energy Intensive industRies
Name of the research project :
4686 - MOF4AIR - Metal Organic Frameworks for carbon dioxide Adsorption processes in power production and energy Intensive - Sources publiques européennes
Funders :
EU - European Union
Funding number :
H2020 - 837975
Available on ORBi UMONS :
since 17 April 2025

Statistics


Number of views
30 (7 by UMONS)
Number of downloads
27 (2 by UMONS)

OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi UMONS