Faits et Chiffres Sur Le Monde Des Polymères Synthétiques. Atlas Du Plast, 2020.
Issac, M.N., Kandasubramanian, B., Effect of microplastics in water and aquatic systems. Environ Sci Pollut Res 28 (2021), 19544–19562.
Sunagawa, S., Acinas, S.G., Bork, P., Bowler, C., Tara Oceans Coordinators, S.G., Acinas, M., Babin, P., Bork, E., Boss, C., Bowler, G., Cochrane, C., De Vargas, M., Follows, G., Gorsky, N., Grimsley, L., Guidi, P., Hingamp, D., Iudicone, O., Jaillon, S., Kandels, L., Karp-Boss, E., Karsenti, M., Lescot, F., Not, H., Ogata, S., Pesant, N., Poulton, J., Raes, C., Sardet, M., Sieracki, S., Speich, L., Stemmann, M.B., Sullivan, S., Sunagawa, P., Wincker, D., Eveillard, G., Gorsky, L., Guidi, D., Iudicone, E., Karsenti, F., Lombard, H., Ogata, S., Pesant, M.B., Sullivan, P., Wincker, C., De Vargas, Tara Oceans: towards global ocean ecosystems biology. Nat Rev Microbiol 18 (2020), 428–445.
Barnes, D.K.A., Galgani, F., Thompson, R.C., Barlaz, M., Accumulation and fragmentation of plastic debris in global environments. Philosophical transactions of the royal society. B: Biol Sci 364 (2009), 1985–1998.
Rosenboom, J.-G., Langer, R., Traverso, G., Bioplastics for a circular economy. Nat Rev Mater 7 (2022), 117–137.
P. Skoczinski, M. Carus, G. Tweddle, P. Ruiz, D. de Guzman, J. Ravenstijn, H. Käb, N. Hark, L. Dammer, “Bio-based Building Blocks and Polymers – Global Capacities, Production and Trends 2022-2027” (nova-Institut GmbH, 2023).
Zeb, A., Liu, W., Ali, N., Shi, R., Wang, Q., Wang, J., Li, J., Yin, C., Liu, J., Yu, M., Liu, J., Microplastic pollution in terrestrial ecosystems: global implications and sustainable solutions. J Hazard Mater, 461, 2024, 132636.
Andrady, A.L., Microplastics in the marine environment. Mar Pollut Bull 62 (2011), 1596–1605.
Cottom, J.W., Cook, E., Velis, C.A., A local-to-global emissions inventory of macroplastic pollution. Nature 633 (2024), 101–108.
Ellis, L.D., Rorrer, N.A., Sullivan, K.P., Otto, M., McGeehan, J.E., Román-Leshkov, Y., Wierckx, N., Beckham, G.T., Chemical and biological catalysis for plastics recycling and upcycling. Nat Catal 4 (2021), 539–556.
Dubois, P., Reactive Extrusion (REx): using chemistry and engineering to solve the problem of ocean plastics. Engineering 14 (2022), 15–18.
Lamberti, F.M., Román-Ramírez, L.A., Wood, J., Recycling of bioplastics: routes and benefits. J Polym Environ 28 (2020), 2551–2571.
Tournier, V., Topham, C.M., Gilles, A., David, B., Folgoas, C., Moya-Leclair, E., Kamionka, E., Desrousseaux, M.-L., Texier, H., Gavalda, S., Cot, M., Guémard, E., Dalibey, M., Nomme, J., Cioci, G., Barbe, S., Chateau, M., André, I., Duquesne, S., Marty, A., An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580 (2020), 216–219.
Bher, A., Mayekar, P.C., Auras, R.A., Schvezov, C.E., Biodegradation of biodegradable polymers in mesophilic aerobic environments. IJMS, 23, 2022, 12165.
Lim, B.K.H., Thian, E.S., Biodegradation of polymers in managing plastic waste — a review. Sci Total Environ, 813, 2022, 151880.
Guicherd, M., Ben Khaled, M., Guéroult, M., Nomme, J., Dalibey, M., Grimaud, F., Alvarez, P., Kamionka, E., Gavalda, S., Noël, M., Vuillemin, M., Amillastre, E., Labourdette, D., Cioci, G., Tournier, V., Kitpreechavanich, V., Dubois, P., André, I., Duquesne, S., Marty, A., An engineered enzyme embedded into PLA to make self-biodegradable plastic. Nature 631 (2024), 884–890.
Rosli, N.A., Karamanlioglu, M., Kargarzadeh, H., Ahmad, I., Comprehensive exploration of natural degradation of poly(lactic acid) blends in various degradation media: a review. Int J Biol Macromol 187 (2021), 732–741.
De Jong, S.J., Arias, E.R., Rijkers, D.T.S., Van Nostrum, C.F., Kettenes-van Den Bosch, J.J., Hennink, W.E., New insights into the hydrolytic degradation of poly(lactic acid): participation of the alcohol terminus. Polymer 42 (2001), 2795–2802.
TSUJI, Hydrolytic Degrad, 2010, 345–381.
S. Li, M. Vert, Bioddegradation of aliphatic polyesters. G. Scott (ed.), Degradable Polymlers, 2nd Edition, 71–131 (2002).
Zhang, S., Li, M., Zuo, Z., Niu, Z., Recent advances in plastic recycling and upgrading under mild conditions. Green Chem 25 (2023), 6949–6970.
Shi, Y., Diao, X., Ji, N., Ding, H., Ya, Z., Xu, D., Wei, R., Cao, K., Zhang, S., Advances and challenges for catalytic recycling and upgrading of real-world mixed plastic waste. ACS Catal 15 (2025), 841–868.
Fukuzaki, H., Yoshida, M., Asano, M., Kumakura, M., Synthesis of copoly(d,l-lactic acid) with relatively low molecular weight and in vitro degradation. Eur Polym J 25 (1989), 1019–1026.
Iwata, T., Doi, Y., Morphology and enzymatic degradation of poly( l -lactic acid) single crystals. Macromolecules 31 (1998), 2461–2467.
Lee, W.-K., Iwata, T., Morphological study on thermal treatment and degradation behaviors of solution-grown poly(l-lactide) single crystals. Ultramicroscopy 108 (2008), 1054–1057.
Tsuji, H., Ikarashi, K., In vitro hydrolysis of poly(l-lactide) crystalline residues as extended-chain crystallites. Part I: long-term hydrolysis in phosphate-buffered solution at 37°C. Biomaterials 25 (2004), 5449–5455.
Kawai, F., Nakadai, K., Nishioka, E., Nakajima, H., Ohara, H., Masaki, K., Iefuji, H., Different enantioselectivity of two types of poly(lactic acid) depolymerases toward poly(l-lactic acid) and poly(d-lactic acid). Polym Degrad Stab 96 (2011), 1342–1348.
Yamashita, K., Kikkawa, Y., Kurokawa, K., Doi, Y., Enzymatic degradation of poly( l-lactide) film by proteinase k: quartz crystal microbalance and atomic force microscopy study. Biomacromolecules 6 (2005), 850–857.
Tsuji, H., Ishida, T., Surface hydrophilicities and enzymatic hydrolyzability of biodegradable polyesters, 2. Macromol Biosci 3 (2003), 51–58.
Li, X., Zhang, H., Li, H., Yuan, X., Encapsulation of proteinase K in PELA ultrafine fibers by emulsion electrospinning: preparation and in vitro evaluation. Colloid Polym Sci 288 (2010), 1113–1119.
R. Auras, L.-T. Lim, S. Selke, H. Tsuji, “Poly(lactic acid): Syntheseis, Structures, Properties, Processing, Applications, and End of Life” (Richard F. Grossman and Domasius Nwabunma, ed. 2nd, 2022), p. 481.
Chevalier, A., Richard, A., Dictionnaire Des Drogues Simples et Composées. Béchet., 2, 1827 Béchet.,.
Panariello, L., Coltelli, M.-B., Buchignani, M., Lazzeri, A., Chitosan and nano-structured chitin for biobased anti-microbial treatments onto cellulose based materials. Eur Polym J 113 (2019), 328–339.
Herrera, N., Roch, H., Salaberria, A.M., Pino-Orellana, M.A., Labidi, J., Fernandes, S.C.M., Radic, D., Leiva, A., Oksman, K., Functionalized blown films of plasticized polylactic acid/chitin nanocomposite: preparation and characterization. Mater Des 92 (2016), 846–852.
Salaberria, A., H. Diaz, R., Andrés, M., Fernandes, S., Labidi, J., The antifungal activity of functionalized chitin nanocrystals in poly (lactid acid) films. Materials, 10, 2017, 546.
Joseph, B., Sam, R.M., Balakrishnan, P., J. Maria, H., Gopi, S., Volova, T., C. M. Fernandes, S., Thomas, S., Extraction of nanochitin from marine resources and fabrication of polymer nanocomposites: Recent advances. Polymers, 12, 2020.
Sharma, S., Majumdar, A., Butola, B.S., Tailoring the biodegradability of polylactic acid (PLA) based films and ramie- PLA green composites by using selective additives. Int J Biol Macromol 181 (2021), 1092–1103.
Jarerat, A., Tokiwa, Y., Tanaka, H., Microbial poly(l-lactide)-degrading enzyme induced by amino acids, peptides, and poly(l-amino acids). J Polym Environ 12 (2004), 139–146.
Rizvi, R., Cochrane, B., Naguib, H., Lee, P.C., Fabrication and characterization of melt-blended polylactide-chitin composites and their foams. J Cell Plast 47 (2011), 283–300.
Herrera, N., Salaberria, A.M., Mathew, A.P., Oksman, K., Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates: Effects on mechanical, thermal and optical properties. Compos Part A: Appl Sci Manuf 83 (2016), 89–97.
Singh, A.A., Wei, J., Herrera, N., Geng, S., Oksman, K., Synergistic effect of chitin nanocrystals and orientations induced by solid-state drawing on PLA-based nanocomposite tapes. Compos Sci Technol 162 (2018), 140–145.
Magnani, C., Fazilati, M., Kádár, R., Idström, A., Evenäs, L., Raquez, J.M., Lo Re, G., Green topochemical esterification effects on the supramolecular structure of chitin nanocrystals: implications for highly stable pickering emulsions. ACS Appl Nano Mater 5 (2022), 4731–4743.
Pillet, M., Les plans D'Expériences Par la Méthode TAGUCHI, 2011.
Hsieh, Y.-T., Nozaki, S., Kido, M., Kamitani, K., Kojio, K., Takahara, A., Crystal polymorphism of polylactide and its composites by X-ray diffraction study. Polym J 52 (2020), 755–763.
Fukushima, K., Tabuani, D., Dottori, M., Armentano, I., Kenny, J.M., Camino, G., Effect of temperature and nanoparticle type on hydrolytic degradation of poly ( lactic acid) nanocomposites. Polym Degrad Stab 96 (2011), 2120–2129.
Hakkarainen, M., Aliphatic polyesters: abiotic and biotic degradation and degradation products. Adv Polym Sci 157 (2002), 113–138.
Li, S., McCarthy, S., Further investigations on the hydrolytic degradation of poly (DL-lactide). Biomaterials 20 (1999), 35–44.
Tsuji, H., Shimizu, K., Sato, Y., Hydrolytic Degrad Poly ( L -Lact Acid): Comb Eff UV Treat Cryst, 2012, 10.1002/app.
Fischer, E.W., Sterzel, H.J., Wegner, G., Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid-Z Z FüR Polym 251 (1973), 980–990.
Tsuji, H., Miyauchi, S., Poly(l-lactide): VI E€ects of crystallinity on enzymatic hydrolysis of poly(l-lactide) without free amorphous region. Polym Degrad Stab, 2001.
Tsuji, H., Mizuno, A., Ikada, Y., Properties and morphology of poly(L-lactide). III. Effects of initial crystallinity on long-termin vitro hydrolysis of high molecular weight poly(L-lactide) film in phosphate-buffered solution. J Appl Polym Sci 77 (2000), 1452–1464.
Kurokawa, K., Yamashita, K., Doi, Y., Abe, H., Structural effects of terminal groups on nonenzymatic and enzymatic degradations of end-capped poly( L -lactide). Biomacromolecules 9 (2008), 1071–1078.
H. Tsuji, S. Miyauchi, Poly(l-lactide): 7. Enzymatic hydrolysis of free and restricted amorphous regions in poly(l-lactide) ®lms with different crystallinities and a ®xed crystalline thickness. (2001).
Aouay, M., Magnin, A., Putaux, J.-L., Boufi, S., Biobased nucleation agents for poly-L-(lactic acid) — effect on crystallization, rheological and mechanical properties. Int J Biol Macromol 218 (2022), 588–600.
Schmitt, E.A., Flanagan, D.R., Linhardt, R.J., Importance of distinct water environments in the hydrolysis of poly(DL-lactide-co-glycolide). ACS Publ, 1994, 10.1021/ma00081a019.
Passerini, N., Craig, D.Q.M., An investigation into the effects of residual water on the glass transition temperature of polylactide microspheres using modulated temperature DSC. J Control Release 73 (2001), 111–115.
Pirzadeh, E., Zadhoush, A., Haghighat, M., Hydrolytic and thermal degradation of PET fibers and PET granule: The effects of crystallization, temperature, and humidity. J Appl Polym Sci 106 (2007), 1544–1549.
Lima, G.M.R., Mukherjee, A., Picchioni, F., Bose, R.K., Biodegradable PBAT, PBS and PHBV polymers characterization for porous structure: further steps to sustainable plastics. Preprint, 2022, 10.21203/rs.3.rs-2154343/v1.
Tsuji, H., Ikada, Y., Blends of crystalline and amorphous poly(lactide). III. Hydrolysis of solution-cast blend films. J Appl Polym Sci 63 (1997), 855–863.
Hyon, S.H., Jamshidi, K., Ikada, Y., Synthesis of polylactides with different molecular weights. Biomaterials 18 (1997), 1503–1508.
Hyon, S.-H., Jamishidi, K., Ikada, Effects of residual monomer on the degradation of DL-lactide polymer. Polym Int 46 (1998), 196–202.
Pan, P., Zhu, B., Kai, W., Dong, T., Inoue, Y., Effect of crystallization temperature on crystal modifications and crystallization kinetics of poly(L-lactide). J Appl Polym Sci 107 (2008), 54–62.
Zhang, Nan, Yu, Xu, Duan, Jin, Yang, Jing-hui, Huang, Ting, Qi, Xiao-dong, Wang, Yong, Comparison study of hydrolytic degradation behaviors between α′- and α-poly(Llactide). Polym Degrad Stab, 148, 2018.