[en] Pd(RuPhos) has recently been introduced as an external initiator for Suzuki-Miyaura catalyst transfer condensative polymerizations (SMCTCPs), exhibiting a controlled polymerization behavior. Paradoxically, the same initiator also enables a controlled activation-deactivation polymerization, raising questions about how these opposing mechanisms can yield controlled polymerizations. This study investigates key parameters influencing control in SMCTCP using poly(3-hexylthiophene) (P3HT), synthesized with a bench-stable, isolated external Pd(RuPhos) initiator, thereby elucidating why these two mechanisms can result in a controlled polymerization behavior. Our results demonstrate that increasing the water content reduces chain transfer reactions in the presence of a chain transfer agent (CTA). Alternative cosolvents, including 1-hexanol and anisole, are explored to mitigate water's other adverse effects, showing a similar beneficial impact, though complete control remains challenging. Introducing additional RuPhos significantly reduces transfer reactions, producing P3HT with a dispersity of 1.16 compared to 1.28 without additional ligand, indicating improved control even with CTA present. The controlled nature of the polymerization is further validated through 1H NMR and MALDI-ToF analyses. A 31P NMR study reveals that free RuPhos forms in the absence of additional ligand, compromising control during polymerization. A computational survey of the coordination environment of the catalytic palladium species and the measurement of reaction rates strongly suggest that water and RuPhos act synergistically: water stabilizes the Pd(RuPhos)-polymer complex via a solvent cage, while additional RuPhos prevents diffusion of the Pd(RuPhos) complex. These findings reconcile the disparate mechanisms of SMCTCP and activation-deactivation polymerization, highlighting the critical roles of water and RuPhos in controlling transfer reactions.
Disciplines :
Chemistry
Author, co-author :
Detavernier, Siebe; Laboratory for Polymer Synthesis, KU Leuven, Heverlee, Belgium
Matz, Florian; Quantum Chemistry and Physical Chemistry, KU Leuven, Heverlee, Belgium
De Winter, Julien ; Organic Synthesis and Mass Spectrometry Laboratory, Center of Innovation and Research in Materials and Polymers (CIRMAP) – University of Mons (UMONS), Mons, Belgium
Gerbaux, Pascal ; Université de Mons - UMONS > Faculté des Sciences > Service de Synthèse et spectrométrie de masse organiques
Jagau, Thomas-C.; Quantum Chemistry and Physical Chemistry, KU Leuven, Heverlee, Belgium
Koeckelberghs, Guy; Laboratory for Polymer Synthesis, KU Leuven, Heverlee, Belgium
Language :
English
Title :
Towards control in Suzuki-Miyaura CTCP – the synergy between water and RuPhos
Research Institute for Materials Science and Engineering
Funding text :
This research was funded by the Fund for Scientific Research (FWO-Flanders - 1SB1623N ) and by Onderzoeksfonds KU Leuven/Research Fund KU Leuven. S.D. is doctoral fellow of the Fund for Scientific Research (FWO-Flanders).This research was supported by the Research Foundation Flanders (FWO) through infrastructure grant I002720N.
Swager, T.M., 50th anniversary perspective: conducting/semiconducting conjugated polymers a personal perspective on the past and the future. Macromolecules 50 (2017), 4867–4886, 10.1021/ACS.MACROMOL.7B00582.
Facchetti, A., π-Conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mater. 23 (2011), 733–758, 10.1021/CM102419Z.
Beaujuge, P.M., Fréchet, J.M.J., Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. J. Am. Chem. Soc. 133 (2011), 20009–20029, 10.1021/JA2073643.
Thomas, S.W., Joly, G.D., Swager, T.M., Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 107 (2007), 1339–1386, 10.1021/cr0501339.
Ho, H.-A., Najari, A., Leclerc, M., Optical detection of DNA and proteins with cationic polythiophenes. Acc. Chem. Res. 41 (2008), 168–178, 10.1021/ar700115t.
Nguyen, T.N., Phung, V.D., Van Tran, V., Recent advances in conjugated polymer-based biosensors for virus detection. Biosensors, 13, 2023, 586, 10.3390/BIOS13060586.
Van Oosten, A., Verduyckt, C., De Winter, J., Gerbaux, P., Koeckelberghs, G., Influence of the dispersity and molar mass distribution of conjugated polymers on the aggregation type and subsequent chiral expression. Soft Matter 19 (2023), 3794–3802, 10.1039/D3SM00163F.
Yang, H.S., Choi, H.N., Lee, I.H., Recent progress on end-group chemistry of conjugated polymers based on Suzuki-Miyaura catalyst-transfer polymerization. Giant, 14, 2023, 100152, 10.1016/J.GIANT.2023.100152.
Willot, P., Steverlynck, J., Moerman, D., Leclère, P., Lazzaroni, R., Koeckelberghs, G., Poly(3-alkylthiophene) with tuneable regioregularity: synthesis and self-assembling properties. Polym. Chem. 4 (2013), 2662–2671, 10.1039/C3PY00236E.
Timmermans, B., De Coene, Y., Van Oosten, A., Clays, K., Verbiest, T., Koeckelberghs, G., Influence of the irregularity of the molecular structure on the chiral expression of poly(fluorene)s. Macromolecules 55 (2022), 8303–8310, 10.1021/ACS.MACROMOL.2C00234.
Bridges, C.R., Ford, M.J., Thomas, E.M., Gomez, C., Bazan, G.C., Segalman, R.A., Effects of side chain branch point on self assembly, structure, and electronic properties of high mobility semiconducting polymers. Macromolecules 51 (2018), 8597–8604, 10.1021/ACS.MACROMOL.8B01906.
Yokoyama, A., Yokozawa, T., Converting step-growth to chain-growth condensation polymerization. Macromolecules 40 (2007), 4093–4101, 10.1021/MA061357B.
Ye, S., Lotocki, V., Xu, H., Seferos, D.S., Group 16 conjugated polymers based on furan, thiophene, selenophene, and tellurophene. Chem. Soc. Rev. 51 (2022), 6442–6474, 10.1039/D2CS00139J.
D'Alterio, M.C., Casals-Cruañas, È., Tzouras, N.V., Talarico, G., Nolan, S.P., Poater, A., Mechanistic aspects of the palladium-catalyzed suzuki-miyaura cross-coupling reaction. Chem. A Eur. J. 27 (2021), 13481–13493, 10.1002/CHEM.202101880.
Elmalem, E., Kiriy, A., Huck, W.T.S., Chain-growth suzuki polymerization of n-type fluorene copolymers. Macromolecules 44 (2011), 9057–9061, 10.1021/MA201934Q.
Yokoyama, A., Suzuki, H., Kubota, Y., Ohuchi, K., Higashimura, H., Yokozawa, T., Chain-growth polymerization for the synthesis of polyfluorene via Suzuki Miyaura coupling reaction from an externally added initiator unit. J. Am. Chem. Soc. 129 (2007), 7236–7237, 10.1021/JA070313V.
Nitto, R., Ohta, Y., Yokozawa, T., Suzuki-miyaura catalyst-transfer condensation polymerization for the synthesis of polyphenylene with ester side chain by using stable, reactive 1,1,2,2-tetraethylethylene glycol boronate (B(Epin)) monomer. Macromolecules 57 (2024), 985–990, 10.1021/ACS.MACROMOL.3C02003.
Amatore, C., Jutand, A., Le Duc, G., Kinetic data for the transmetalation/reductive elimination in palladium-catalyzed suzuki–miyaura reactions: unexpected triple role of hydroxide ions used as base,. Chem. – A Eur. J. 17 (2011), 2492–2503, 10.1002/CHEM.201001911.
Lennox, A.J.J., Lloyd-Jones, G.C., Transmetalation in the Suzuki–Miyaura coupling: the fork in the trail. Angew. Chem. Int. Ed. 52 (2013), 7362–7370, 10.1002/ANIE.201301737.
Lima, C.F.R.A.C., Rodrigues, A.S.M.C., Silva, V.L.M., Silva, A.M.S., Santos, L.M.N.B.F., Role of the base and control of selectivity in the suzuki–miyaura cross-coupling reaction. Chem. Cat. Chem. 6 (2014), 1291–1302, 10.1002/CCTC.201301080.
Kosaka, K., Ohta, Y., Yokozawa, T., Kosaka, K., Ohta, Y., Yokozawa, T., Influence of the boron moiety and water on suzuki–miyaura catalyst-transfer condensation polymerization. Macromol. Rapid Commun. 36 (2015), 373–377, 10.1002/MARC.201400530.
Lee, J., Kim, H., Park, H., Kim, T., Hwang, S.-H., Seo, D., Dong Chung, T., Choi, T.-L., Universal Suzuki–Miyaura catalyst-transfer polymerization for precision synthesis of strong donor/acceptor-based conjugated polymers and their sequence engineering. J. Am. Chem. Soc. 143 (2021), 11180–11190, 10.1021/jacs.1c05080.
Kim, H., Lee, J., Kim, T., Cho, M., Choi, T.-L., Precision synthesis of various low-bandgap donor-acceptor alternating conjugated polymers via living suzuki-miyaura catalyst-transfer polymerization. Angew. Chem. Int. Ed., 61, 2022, e202205828, 10.1002/anie.202205828.
Seo, K.B., Lee, I.H., Lee, J., Choi, I., Choi, T.L., A rational design of highly controlled suzuki-miyaura catalyst-transfer polycondensation for precision synthesis of polythiophenes and their block copolymers: marriage of palladacycle precatalysts with MIDA-boronates. J. Am. Chem. Soc. 140 (2018), 4335–4343, 10.1021/JACS.7B13701.
Verswyvel, M., Verstappen, P., De Cremer, L., Verbiest, T., Koeckelberghs, G., Development of a universal chain-growth polymerization protocol of conjugated polymers: toward a variety of all-conjugated block-copolymers. J. Polym. Sci. A Polym. Chem. 49 (2011), 5339–5349, 10.1002/POLA.25014.
Verswyvel, M., Steverlynck, J., Hadj Mohamed, S., Trabelsi, M., Champagne, B., Koeckelberghs, G., All-conjugated ABC-block-copolymer formation with a varying sequence via an unassociated catalyst. Macromolecules 47 (2014), 4668–4675, 10.1021/MA500610P.
Lee, J., Ryu, H., Park, S., Cho, M., Choi, T.L., Living Suzuki-Miyaura catalyst-transfer polymerization for precision synthesis of length-controlled armchair graphene nanoribbons and their block copolymers. J. Am. Chem. Soc. 145 (2023), 15488–15495, 10.1021/JACS.3C04130.
Firsan, S.J., Sivakumar, V., Colacot, T.J., Emerging trends in cross-coupling: twelve-electron-based L1Pd(0) catalysts, their mechanism of action, and selected applications. Chem. Rev. 122 (2022), 16983–17027, 10.1021/ACS.CHEMREV.2C00204.
Lee, J., Kim, H., Park, H., Kim, T., Hwang, S.H., Seo, D., Chung, T.D., Choi, T.L., Universal suzuki-miyaura catalyst-transfer polymerization for precision synthesis of strong donor/acceptor-based conjugated polymers and their sequence engineering. J. Am. Chem. Soc. 143 (2021), 11180–11190, 10.1021/JACS.1C05080.
Fors, B.P., Watson, D.A., Biscoe, M.R., Buchwald, S.L., A highly active catalyst for Pd-catalyzed amination reactions: cross-coupling reactions using aryl mesylates and the highly selective monoarylation of primary amines using aryl chlorides. J. Am. Chem. Soc. 130 (2008), 13552–13554, 10.1021/JA8055358.
Biscoe, M.R., Fors, B.P., Buchwald, S.L., A new class of easily activated palladium precatalysts for facile C-N cross-coupling reactions and the low temperature oxidative addition of aryl chlorides. J. Am. Chem. Soc. 130 (2008), 6686–6687, 10.1021/JA801137K.
Sotnik, S.O., Mishchenko, A.M., Rusanov, E.B., Kozytskiy, A.V., Gavrilenko, K.S., Ryabukhin, S.V., Volochnyuk, D.M., Kolotilov, S.V., Third generation buchwald precatalysts with XPhos and RuPhos: multigram scale synthesis, solvent-dependent isomerization of XPhos Pd G3 and quality control by 1H- and 31P-NMR spectroscopy. Molecules, 26, 2021, 3507, 10.3390/MOLECULES26123507.
Barder, T.E., Buchwald, S.L., Rationale behind the resistance of dialkylbiaryl phosphines toward oxidation by molecular oxygen. J. Am. Chem. Soc. 129 (2007), 5096–5101, 10.1021/JA0683180.
Tirado-Rives, J., Jorgensen, W.L., Performance of B3LYP density functional methods for a large set of organic molecules. J. Chem. Theory Comput. 4 (2008), 297–306, 10.1021/CT700248K.
Epifanovsky, E., Gilbert, A.T.B., Feng, X., Lee, J., Mao, Y., Mardirossian, N., Pokhilko, P., White, A.F., Coons, M.P., Dempwolff, A.L., Gan, Z., Hait, D., Horn, P.R., Jacobson, L.D., Kaliman, I., Kussmann, J., Lange, A.W., Lao, K.U., Levine, D.S., Liu, J., McKenzie, S.C., Morrison, A.F., Nanda, K.D., Plasser, F., Rehn, D.R., Vidal, M.L., You, Z.Q., Zhu, Y., Alam, B., Albrecht, B.J., Aldossary, A., Alguire, E., Andersen, J.H., Athavale, V., Barton, D., Begam, K., Behn, A., Bellonzi, N., Bernard, Y.A., Berquist, E.J., Burton, H.G.A., Carreras, A., Carter-Fenk, K., Chakraborty, R., Chien, A.D., Closser, K.D., Cofer-Shabica, V., Dasgupta, S., De Wergifosse, M., Deng, J., Diedenhofen, M., Do, H., Ehlert, S., Fang, P.T., Fatehi, S., Feng, Q., Friedhoff, T., Gayvert, J., Ge, Q., Gidofalvi, G., Goldey, M., Gomes, J., González-Espinoza, C.E., Gulania, S., Gunina, A.O., Hanson-Heine, M.W.D., Harbach, P.H.P., Hauser, A., Herbst, M.F., Hernández Vera, M., Hodecker, M., Holden, Z.C., Houck, S., Huang, X., Hui, K., Huynh, B.C., Ivanov, M., Jász, Á., Ji, H., Jiang, H., Kaduk, B., Kähler, S., Khistyaev, K., Kim, J., Kis, G., Klunzinger, P., Koczor-Benda, Z., Koh, J.H., Kosenkov, D., Koulias, L., Kowalczyk, T., Krauter, C.M., Kue, K., Kunitsa, A., Kus, T., Ladjánszki, I., Landau, A., Lawler, K.V., Lefrancois, D., Lehtola, S., Li, R.R., Li, Y.P., Liang, J., Liebenthal, M., Lin, H.H., Lin, Y.S., Liu, F., Liu, K.Y., Loipersberger, M., Luenser, A., Manjanath, A., Manohar, P., Mansoor, E., Manzer, S.F., Mao, S.P., Marenich, A.V., Markovich, T., Mason, S., Maurer, S.A., McLaughlin, P.F., Menger, M.F.S.J., Mewes, J.M., Mewes, S.A., Morgante, P., Mullinax, J.W., Oosterbaan, K.J., Paran, G., Paul, A.C., Paul, S.K., Pavošević, F., Pei, Z., Prager, S., Proynov, E.I., Rák, Á., Ramos-Cordoba, E., Rana, B., Rask, A.E., Rettig, A., Richard, R.M., Rob, F., Rossomme, E., Scheele, T., Scheurer, M., Schneider, M., Sergueev, N., Sharada, S.M., Skomorowski, W., Small, D.W., Stein, C.J., Su, Y.C., Sundstrom, E.J., Tao, Z., Thirman, J., Tornai, G.J., Tsuchimochi, T., Tubman, N.M., Veccham, S.P., Vydrov, O., Wenzel, J., Witte, J., Yamada, A., Yao, K., Yeganeh, S., Yost, S.R., Zech, A., Zhang, I.Y., Zhang, X., Zhang, Y., Zuev, D., Aspuru-Guzik, A., Bell, A.T., Besley, N.A., Bravaya, K.B., Brooks, B.R., Casanova, D., Da Chai, J., Coriani, S., Cramer, C.J., Cserey, G., Deprince, A.E., Distasio, R.A., Dreuw, A., Dunietz, B.D., Furlani, T.R., Goddard, W.A., Hammes-Schiffer, S., Head-Gordon, T., Hehre, W.J., Hsu, C.P., Jagau, T.C., Jung, Y., Klamt, A., Kong, J., Lambrecht, D.S., Liang, W., Mayhall, N.J., McCurdy, C.W., Neaton, J.B., Ochsenfeld, C., Parkhill, J.A., Peverati, R., Rassolov, V.A., Shao, Y., Slipchenko, L.V., Stauch, T., Steele, R.P., Subotnik, J.E., Thom, A.J.W., Tkatchenko, A., Truhlar, D.G., Van Voorhis, T., Wesolowski, T.A., Whaley, K.B., Woodcock, H.L., Zimmerman, P.M., Faraji, S., Gill, P.M.W., Head-Gordon, M., Herbert, J.M., Krylov, A.I., Software for the frontiers of quantum chemistry: an overview of developments in the Q-Chem 5 package. J Chem Phys 155, 2021, 084801, 10.1063/5.0055522.
Marenich, A.V., Cramer, C.J., Truhlar, D.G., Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113 (2009), 6378–6396, 10.1021/JP810292N.
Cossi, M., Rega, N., Scalmani, G., Barone, V., Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 24 (2003), 669–681, 10.1002/JCC.10189.
Lange, A.W., Herbert, J.M., Polarizable continuum reaction-field solvation models affording smooth potential energy surfaces. J. Phys. Chem. Lett. 1 (2010), 556–561, 10.1021/JZ900282C.
Bondi, A., Van der waals volumes and radii. J. Phys. Chem. 68 (1964), 441–451, 10.1021/J100785A001/ASSET/J100785A001.FP.PNG_V03.
R.S. Rowland, R. Taylor, Intermolecular Nonbonded Contact Distances in Organic Crystal Structures: Comparison with Distances Expected from van der Waals Radii, (1996). https://doi.org/10.1021/JP953141.