R300 - Institut de Recherche en Technologies de l'Information et Sciences de l'Informatique R450 - Institut NUMEDIART pour les Technologies des Arts Numériques
European Projects :
HE - 101085607 - eLinoR - Beyond Low-Rank Factorizations
Funders :
HORIZON EUROPE European Research Council European Union
Wang, B., Fan, J., Robust matrix completion with heavy-tailed noise. J. Am. Stat. Assoc. 120:550 (2025), 922–934.
Peng, J., Sun, W., Jiang, F., Chen, H., Zhou, Y., Du, Q., A general loss-based nonnegative matrix factorization for hyperspectral unmixing. IEEE Geosci. Remote Sens. Lett. 19 (2022), 1–5.
Lam, E.Y., Non-negative matrix factorization for images with Laplacian noise. 2008 IEEE Asia Pacific Conference on Circuits and Systems, 2008, 798–801.
Kong, D., Ding, C., Huang, H., Robust nonnegative matrix factorization using L21-norm. International Conference on Information and Knowledge Management, 2011, 673–682.
Du, L., Li, X., Shen, Y.-D., Robust nonnegative matrix factorization via half-quadratic minimization. 2012 IEEE 12th International Conference on Data Mining, 2012, 201–210.
Peng, S., Ser, W., Lin, Z., Chen, B., Robust sparse nonnegative matrix factorization based on maximum correntropy criterion. 2018 IEEE International Symposium on Circuits and Systems (ISCAS), 2018, 1–5.
Liutkus, A., Fitzgerald, D., Badeau, R., Cauchy nonnegative matrix factorization. 2015 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 2015, 1–5.
Gao, H., Nie, F., Cai, W., Huang, H., Robust capped norm nonnegative matrix factorization: capped norm NMF. Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, 2015, 871–880.
Scarf, H., A min-max solution of an inventory problem. Studies in the Mathematical Theory of Inventory and Production, 1958, Stanford University Press, Redwood City, CA, 201–209.
Cheng, J., Li-Yang Chen, R., Najm, H.N., Pinar, A., Safta, C., Watson, J.-P., Distributionally robust optimization with principal component analysis. SIAM J. Optim. 28:2 (2018), 1817–1841.
Zhu, S., Xie, L., Zhang, M., Gao, R., Xie, Y., Distributionally robust weighted k-nearest neighbors. Advances in Neural Information Processing Systems, vol. 35, 2022, 29088–29100.
Faccini, D., Maggioni, F., Potra, F.A., Robust and distributionally robust optimization models for linear support vector machine. Comput. Oper. Res., 147, 2022, 105930.
Barkhoda, W., Seyedi, A., Gillis, N., Akhlaghian Tab, F., Instance-wise distributionally robust nonnegative matrix factorization. Pattern Recognit., 169, 2026, 111732.
Soleymanbaigi, S., Seyedi, A., Akhlaghian Tab, F., Daneshfar, F., Encoder-decoder nonnegative matrix factorization with β-divergence for data clustering. Pattern Recognit., 171, 2026, 112211.
Xiong, H., Kong, D., Nie, F., Cauchy balanced nonnegative matrix factorization. Artif. Intell. Rev. 56:10 (2023), 11867–11903.
Cavazos, J.S., Fessler, J.A., Balzano, L., ALPCAH: sample-wise heteroscedastic PCA with tail singular value regularization. 2023 International Conference on Sampling Theory and Applications (SAMPTA), 2023, 1–6.
Yu, Z., Dong, G., Liu, H., Sar image quality assessment: from sample-wise to class-wise. Remote Sens., 15(8), 2023.
Eiras, F., Alfarra, M., Torr, P., Kumar, M.P., Dokania, P.K., Ghanem, B., Bibi, A., Ancer: anisotropic certification via sample-wise volume maximization. Trans. Mach. Learn. Res., 2022.
Chen, L., Wu, C.-T., Lin, C.-H., Dai, R., Liu, C., Clarke, R., Yu, G., Van Eyk, J.E., Herrington, D.M., Wang, Y., Swcam: estimation of subtype-specific expressions in individual samples with unsupervised sample-wise deconvolution. Bioinformatics 38:5 (2021), 1403–1410.
Wang, H., Yang, W., Guan, N., Cauchy sparse NMF with manifold regularization: a robust method for hyperspectral unmixing. Knowl.-Based Syst., 184, 2019, 104898.
Kumar, M., Packer, B., Koller, D., Self-paced learning for latent variable models. Advances in Neural Information Processing Systems, vol. 23, 2010, 1189–1197.
Seyedi, S.A., Ghodsi, S.S., Akhlaghian, F., Jalili, M., Moradi, P., Self-paced multi-label learning with diversity. Asian Conference on Machine Learning, vol. 101, 2019, PMLR, 790–805.
Zhao, Q., Meng, D., Jiang, L., Xie, Q., Xu, Z., Hauptmann, A., Self-paced learning for matrix factorization. Proc. AAAI Conf. Artif. Intell., 29(1), Feb. 2015.
Zhu, X., Zhang, Z., Improved self-paced learning framework for nonnegative matrix factorization. Pattern Recognit. Lett. 97 (2017), 1–7.
Huang, S., Zhao, P., Ren, Y., Li, T., Xu, Z., Self-paced and soft-weighted nonnegative matrix factorization for data representation. Knowl.-Based Syst. 164 (2019), 29–37.
Candès, E.J., Li, X., Ma, Y., Wright, J., Robust principal component analysis?. J. ACM, 58(3), 2011.
Zhang, L., Chen, Z., Zheng, M., He, X., Robust non-negative matrix factorization. Front. Electr. Electron. Eng. China 6:2 (2011), 192–200.
Daubechies, I., DeVore, R., Fornasier, M., Güntürk, C.S., Iteratively reweighted least squares minimization for sparse recovery. Commun. Pure Appl. Math. 63:1 (2010), 1–38.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12 (2011), 2825–2830.
Yang, J., Shi, R., Wei, D., Liu, Z., Zhao, L., Ke, B., Pfister, H., Ni, B., MedMNIST v2 - a large-scale lightweight benchmark for 2D and 3D biomedical image classification. Sci. Data, 10(1), 2023, 41.
Lee, D., Seung, H.S., Algorithms for non-negative matrix factorization. Advances in Neural Information Processing Systems, vol. 13, 2000, MIT Press, 535–541.