glycerol ether; hydroformylation; polyurethane; telomerization; Physical and Theoretical Chemistry; Polymers and Plastics; Materials Chemistry
Abstract :
[en] A new polyurethane with unsaturated pendent chains is described and chemically derivatized. By employing the palladium-catalyzed 1,3-butadiene telomerization reaction with solketal followed by a deprotection step of the ketal group using sulfonic acid resins, a diol derived from glycerol was prepared in pure form. The resulting diol was used as a comonomer and polymerized with either toluene diisocyanate (TDI) or hexamethylene diisocyanate (HMDI) under controlled conditions in DMF, yielding polyurethanes (PUs) with molecular weights ranging from 6500 to 34,000 g/mol. The study shows that the PUs' characteristics are significantly influenced by the NCO/OH ratio, catalyst loading, and reaction medium. Thermal analyses indicate that TDI-based PUs exhibit higher glass transition temperatures compared to HMDI-based PUs. Furthermore, hydroformylation reactions were performed to convert the double bonds of the PU side chains introduced thanks to the telomerization reaction into pending aldehyde groups. The newly synthesized PUs were characterized using 1H NMR and FT-IR spectroscopy, confirming the successful formation and functionalization of the polymers.
Disciplines :
Chemistry
Author, co-author :
Al Souki, Eyad; Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181—UCCS—Unité de Catalyse et Chimie du Solide, Lille, France
Meimoun, Julie; Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181—UCCS—Unité de Catalyse et Chimie du Solide, Lille, France
Drelon, Mathieu; Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181—UCCS—Unité de Catalyse et Chimie du Solide, Lille, France
Suisse, Isabelle; Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181—UCCS—Unité de Catalyse et Chimie du Solide, Lille, France
De Winter, Julien ; Université de Mons - UMONS > Faculté des Sciences > Service de Synthèse et spectrométrie de masse organiques
Zinck, Philippe; Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181—UCCS—Unité de Catalyse et Chimie du Solide, Lille, France
Sauthier, Mathieu ; Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181—UCCS—Unité de Catalyse et Chimie du Solide, Lille, France
Language :
English
Title :
Synthesis and Post-Functionalization of New Polyurethanes From Glycerol Monoether
S836 - Synthèse et spectrométrie de masse organiques
Research institute :
Matériaux
Funders :
Centre National de la Recherche Scientifique
Funding text :
We acknowledge the Minist\u00E8re de l'Enseignement Sup\u00E9rieur de la Recherche et de l'Innovation and the Centre National de la Recherche Scientifique for their financial support, the MONOPOLE project from R\u00E9gion Hauts\u2010de\u2010France (STIMuLE Partenariat) for E. Al Souki's fellowship, as well as C\u00E9line Delabre for the GC analyses and Aur\u00E9lie Malfait for SEC analyses.This work was supported by the state as part of the \u201CProgramme d'Investissement d'Avenir\u201D under reference ANR 15\u2010CE07\u20100018\u201001 H2CAT, Minist\u00E8re de l'Enseignement Sup\u00E9rieur de la Recherche et de l'Innovation, and Centre National de la Recherche Scientifique. Funding:
D. K. Chattopadhyay and D. C. Webster, “Thermal Stability and Flame Retardancy of Polyurethanes,” Progress in Polymer Science 34 (2009): 1068–1133.
O. Bayer, “Das Di-Isocyanat-Polyadditionsverfahren (Polyurethane),” Angewandte Chemie 59 (1947): 257–272.
F. M. de Souza, P. K. Kahol, and R. K. Gupta, “Introduction to Polyurethane Chemistry,” in Polyurethane Chemistry: Renewable Polyols and Isocyanates (ACS Symposium Series), vol. 1380 (American Chemical Society, 2021), 1–24.
K. M. Zia, S. Anjum, M. Zuber, M. Mujahid, and T. Jamil, “Synthesis and Molecular Characterization of Chitosan Based Polyurethane Elastomers Using Aromatic Diisocyanate,” International Journal of Biological Macromolecules 66 (2014): 26–32.
M. Szycher, Szycher's Handbook of Polyurethanes (CRC Press, Taylor & Francis Group, 2013), 1–12.
J. O. Akindoyo, M. Beg, S. Ghazali, M. R. Islam, N. Jeyaratnam, and A. R. Yuvaraj, “Polyurethane Types, Synthesis and Applications – A Review,” RSC Advances 6 (2016): 114453–114482.
M. Basko, M. Bednarek, L.-T. T. Nguyen, P. Kubisa, and F. DuPrez, “Functionalization of Polyurethanes by Incorporation of Alkyne Side-Groups to Oligodiols and Subsequent Thiol–Yne Post-Modification,” European Polymer Journal 49 (2013): 3573–3581.
Z. K. Zander, P. Chen, Y. H. Hsu, et al., “Post-Fabrication QAC-Functionalized Thermoplastic Polyurethane for Contact-Killing Catheter Applications,” Biomaterials 178 (2018): 339–350.
Z. S. Petrovic, “Polyurethanes From Vegetable Oils,” Polymer Reviews 48 (2008): 109–155.
D. Simón, A. M. Borreguero, A. de Lucas, and J. F. Rodríguez, “Recycling of Polyurethanes From Laboratory to Industry, a Journey Towards the Sustainability,” Waste Management 76 (2018): 147–171.
E. S. Vasiliadou and A. A. Lemonidou, “Glycerol Transformation to Value Added C3 Diols: Reaction Mechanism, Kinetic, and Engineering Aspects,” WIREs Energy and Environment 4 (2015): 486–520.
M. Główka and T. Krawczyk, “New Trends and Perspectives in Production of 1,2-Propanediol,” ACS Sustainable Chemistry & Engineering 11 (2023): 7274–7287.
D. Peruzzo, M. Drelon, C. Dumont, A. Mortreux, I. Suisse, and M. Sauthier, “Palladium Catalyzed Telomerization of Bio-Based Polyols With Atmospheric Pressure Bubbling Butadiene,” Molecular Catalysis 502 (2021): 111369.
A. Behr, J. Leschinski, C. Awungacha, S. Simic, and T. Knoth, “Telomerization of Butadiene With Glycerol: Reaction Control Through Process Engineering, Solvents, and Additives,” ChemSusChem 2 (2009): 71–76.
R. Palkovits, I. Nieddu, C. A. Kruithof, R. J. M. Klein Gebbink, and B. Weckhuysen, “Palladium-Based Telomerization of 1,3-Butadiene With Glycerol Using Methoxy-Functionalized Triphenylphosphine Ligands,” Chemistry 14 (2008): 8995–9005.
S. Bigot, J. Lai, I. Suisse, M. Sauthier, A. Mortreux, and Y. Castanet, “Telomerisation of 1,3-Butadiene With Glycerol Under Aqueous Biphasic Conditions: Influence of the Reaction Conditions on the Products Distribution,” Applied Catalysis A, General 382 (2010): 181–189.
S. Bigot, H. Bricout, I. Suisse, A. Mortreux, and Y. Castanet, “Synthesis and Surface Properties of Glycerol Based C8 Chain Monoethers,” Industrial and Engineering Chemistry Research 50 (2011): 9870–9875.
B. Gruber, B. Fabry, B. Giesen, R. Müller, and F. Wangemann, “Chemie and Eigenschaften von Glycerinethersulfaten,” Tenside Surfactants Detergents 30 (1993): 422–426.
C. X. A. Da Silva, V. L. C. Goncalves, and C. J. A. Mota, “Water-Tolerant Zeolitecatalyst for the Acetalisation of Glycerol,” Green Chemistry 11 (2009): 38–41.
J. Kowalska-Kus, A. Held, M. Frankowski, and K. Nowinska, “Solketal Formation From Glycerol and Acetone Over Hierarchical Zeolites of Different Structure as Catalysts,” Journal of Molecular Catalysis A: Chemical 426 (2017): 205–212.
M. Pegoraro, A. Galbiati, and G. Ricca, “1H Nuclear Magnetic Resonance Study of Polyurethane Prepolymers From Toluene Diisocyanate and Polypropylene Glycol,” Journal of Applied Polymer Science 87 (2003): 347–357.
Y. He, X. Zhang, X. Zhang, H. Huang, J. Chang, and H. Chen, “Structural Investigations of Toluene Diisocyanate (TDI) and Trimethylolpropane (TMP)-based Polyurethane Prepolymer,” Journal of Industrial and Engineering Chemistry 18 (2012): 1620–1627.
A. S. More, T. Lebarbe, L. Maisonneuve, B. Gadenne, C. Alfos, and H. Cramail, “Novel Fatty Acid Based di-Isocyanates Towards the Synthesis of Thermoplastic Polyurethanes,” European Polymer Journal 49 (2013): 823–833.
K. Martin, J. Spickermann, H. J. Räder, and K. Müllen, “Why Does Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry Give Incorrect Results for Broad Polymer Distributions?,” Rapid Communications in Mass Spectrometry 10 (1996): 1471–1474.
S. Duquesne, M. Le Bras, S. Bourbigot, et al., “Thermal Degradation of Polyurethane and Polyurethane/Expandable Graphite Coatings,” Polymer Degradation and Stability 74 (2001): 493–499.
A. van Rooy, J. N. H. Bruijn, C. F. Roobeek, P. C. J. Kamer, and P. W. N. M. van Leeuwen, “Rhodium Catalysed Hydroformylation of Branched 1-Alkenes; Bulky Phosphite vs. Triphenylphosphine as Modifying Ligand,” Journal of Organometallic Chemistry 507 (1996): 69–73.
N. Ruiz, A. Polo, S. Castillón, and C. Claver, “Hydroformylation of Allyl Ethers. A Study of the Regioselectivity Using Rhodium Catalysts,” Journal of Molecular Catalysis A: Chemical 137 (1999): 93–100.
W. Alsalahi and A. M. Trzeciak, “Advantages of the Solventless Hydroformylation of Olefins,” Journal of Molecular Catalysis A: Chemical 408 (2015): 147–151.