[en] Given μ>0 we look for solutions λ∈ℝ and v₁,…,vₖ ∈ H¹(ℝᴺ) of the system
−Δvᵢ+λvᵢ+Vᵢ(x)vᵢ=∑ⱼ₌₁ᵏj βᵢⱼ vᵢ vⱼ² and ∫_{ℝᴺ} (v₁² + ⋯ + vₖ²) dx = μ, in ℝᴺ, i=1,…,k,
where N=1,2,3, Vᵢ:ℝN→ℝ and βᵢⱼ∈ℝ satisfy βᵢⱼ=βⱼᵢ and βᵢᵢ>0. Under suitable assumptions on the βᵢⱼ's, given a non-degenerate critical point ξ₀ of a suitable linear combination of the potentials Vᵢ, we build solutions whose components concentrate at ξ₀ as the prescribed global mass μ is either large (when N=1) or small (when N=3) or it approaches some critical threshold (when N=2).
Disciplines :
Mathematics
Author, co-author :
Huang, Xiaomeng
Pistoia, Angela; Dipartimento SBAI, Sapienza Università di Roma, via Antonio Scarpa 16, 00161 Roma, Italy
Troestler, Christophe ; Université de Mons - UMONS > Faculté des Sciences > Service d'Analyse numérique
Wang, Chunhua; School of Mathematics and Statistics, Key Lab NAA–MOE, Central China Normal University, Wuhan 430079, China
Language :
English
Title :
Normalized vector solutions of nonlinear Schrödinger systems
Publication date :
15 October 2025
Journal title :
Discrete and Continuous Dynamical Systems
ISSN :
1078-0947
eISSN :
1553-5231
Publisher :
American Institute of Mathematical Sciences (AIMS)