Paleomicrobiology to investigate copper resistance in bacteria : isolation and description of Cupriavidus necator B9 in the soil of a medieval foundry.
Gillan, David; Van Camp, Camille; Mergeay, M.et al.
2017 • In Environmental Microbiology, 19, p. 770-787
Gillan, David ; Université de Mons > Faculté des Sciences > Protéomie et Microbiologie
Van Camp, Camille
Mergeay, M.
Provoost, Ann
Thomas, Nicolas
Vermard, Laurent
Billon, Gabriel
Wattiez, Ruddy ; Université de Mons > Faculté des Sciences > Service de Protéomie et Microbiologie
Language :
English
Title :
Paleomicrobiology to investigate copper resistance in bacteria : isolation and description of Cupriavidus necator B9 in the soil of a medieval foundry.
Allen, H.E., Fu, G., and Deng, B. (1993) Analysis of acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments. Environ Toxicol Chem 12: 1441–1454.
Andrup, L., Klingenberg Barfod, K., Jensen, G.B., and Smidt, L. (2008) Detection of large plasmids from the Bacillus cereus group. Plasmid 59: 139–143.
Anton, A., Weltrowski, A., Haney, C.J., Franke, S., Grass, G., Rensing, C., and Nies, D.H. (2004) Characteristics of Zinc Transport by Two Bacterial Cation Diffusion Facilitators from Ralstonia metallidurans CH34 and Escherichia coli. J Bacteriol 186: 7499–7507.
Besaury, L., Bodilis, J., Delgas, F., Andrade, S., De la Iglesia, R., Ouddane, B., and Quillet, L. (2013) Abundance and diversity of copper resistance genes cusA and copA in microbial communities in relation to the impact of copper on Chilean marine sediments. Mar Pollut Bull 67: 16–25.
Biebl, H., and Pfennig, N. (1981) Isolation of members of the family Rhodospirillaceae, p. 267–273. In The Prokaryotes, a Handbook on Habitats, Isolation and Identification of Bacteria, Vol. 1. Starr, M. P., Stolp, J., Truper, H.G., Balows, A., and Schlegel, H.G. (ed.). Berlin: Springer-Verlag.
Bouskill, N.J., Barker-Finkel, J., Galloway, T.S., Handy, R.D., and Ford, T.E. (2010) Temporal bacterial diversity associated with metal-contaminated river sediments. Ecotoxicology 19: 317–328.
Brown, N.L., Barrett, S.R., Camakaris, J., Lee, B.T., and Rouch, D.A. (1995) Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Mol Microbiol 17: 1153–1166.
Buchholz-Cleven, B.E.E., Rattunde, B., and Straub, K.L. (1997) Screening for genetic diversity of isolates of anaerobic Fe(II)-oxidizing bacteria using DGGE and whole-cell hybridization. Syst Appl Microbiol 20: 301–309.
Chakravorty, D.K., Li, P., Tran, T.T., Bayse, C.A., and Merz, K.M. Jr, (2016) Metal ion capture mechanism of a copper metallochaperone. Biochemistry 55: 501–509.
Di Cesare, A., Eckert, E.M., D'urso, S., Bertoni, R., Gillan, D.C., Wattiez, R., and Corno, G. (2016) Co-occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal wastewater treatment plants. Water Res 94: 208–214.
Drancourt, M., and Raoult, D. (2005) Palaeomicrobiology: current issues and perspectives. Nature Rev Microbiol 3: 23–35.
Fang, L., Wei, X., Cai, P., Huang, Q., Chen, H., Liang, W., and Rong, X. (2011) Role of extracellular polymeric substances in Cu(II) adsorption on Bacillus subtilis and Pseudomonas putida. Bioresource Technol 102: 1137–1141.
Feris, K.P., Ramsey, P.W., Frazar, C., Rillig, M.C., Gannon, J.E., and Holben, W.E. (2003) Structure and seasonal dynamics of hyporheic zone microbial communities in free-stone rivers of the western United States. Microb Ecol 46: 200–215.
Fortin, N., Beaumier, D., Lee, K., and Greer, C.W. (2004) Soil washing improves the recovery of total community DNA from polluted and high organic content sediments. J Microbiol Meth 56: 181–191.
Franke, S., Grass, G., Rensing, C., and Nies, D.H. (2003) Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol 185: 3804–3812.
Gillan, D.C. (2016) Metal resistance systems in cultivated bacteria: are they found in complex communities?. Curr Opin Biotechnol 38: 123–130.
Gillan, D.C., Danis, B., Pernet, P., Joly, G., and Dubois, P. (2005) Structure of sediment-associated microbial communities along a heavy metal contamination gradient in the marine environment. Appl Environ Microbiol 71: 679–690.
Gillan, D.C., and Pernet, P. (2007) Adherent bacteria in heavy metal contaminated marine sediments. Biofouling 23: 1–13.
Gillan, D.C., Roosa, S., Kunath, B., Billon, G., and Wattiez, R. (2015) The long-term adaptation of bacterial communities in metal-contaminated sediments: a metaproteogenomic study. Environ Microbiol 17: 1991–2005.
Gillet, L.C., Navarro, P., Tate, S., Röst, H., Selevsek, N., Reiter., et al. (2012) Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis. Mol Cell Proteomics 11: O111.016717.
Goris, J., Konstantinidis, K.T., Klappenbach, J.A., Coenye, T., Vandamme, P., and Tiedje, J.M. (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57: 81–91.
Gutiérrez-Barranquero, J.A., de Vicente, A., Carrión, V.J., Sundin, G.W., and Cazorla, F.M. (2013) Recruitment and rearrangement of three different genetic determinants into a conjugative plasmid increase copper resistance in Pseudomonas syringae. Appl Environ Microbiol 79: 1028–1033.
Li, W. (2009) Analysis and comparison of very large metagenomes with fast clustering and functional annotation. BMC Bioinformatics 10: 359.
Lim, C.K., and Cooksey, D.A. (1993) Characterization of chromosomal homologs of the plasmid-borne copper resistance operon of Pseudomonas syringae. J Bacteriol 175: 4492–4498.
Lourino-Cabana, B., Lesven, L., Billon, G., Proix, N., Recourt, P., Ouddane, B., et al. (2010) Automatic trace metal monitoring station use for early warning and short term events in polluted rivers: application to streams loaded by mining tailing. J Environ Monit 12: 1898–1906.
Makkar, N.S., and Casida Jr, L.E. (1987) Cupriavidus necator gen. nov., sp. nov.: a nonobligate bacterial predator of bacteria in soil. Int J System Bacteriol 37: 323–326.
Mergeay, M., and Van Houdt, R. (Eds) (2015) Metal response in Cupriavidus metallidurans. Volume I: From habitats to genes and proteins. In Springer briefs in Biometals. Dordrecht, The Netherlands: Springer, 89 pp.
Mergeay, M., Nies, D., Schlegel, H.G., Gerits, P., Charles, P., and Van Gijegem, F. (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162: 328–334.
Mergeay, M., Monchy, S., Vallaeys, T., Auquier, V., Benotmane, A., Bertin, P., et al. (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol Rev 27: 385–410.
Meyer, F., Paarmann, D., D'souza, M., Olson, R., Glass, E.M., Kubal., et al. (2008) The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9: 386.
Miller, C.D., Pettee, B., Zhang, C., Pabst, M., McLean, J.E., and Anderson, A.J. (2009) Copper and cadmium: responses in Pseudomonas putida KT2440. Lett Appl Microbiol 49: 775–783.
Monchy, S., Benotmane, M.A., Wattiez, R., van Aelst, S., Auquier, V., Borremans, B., et al. (2006) Transcriptomic and proteomic analyses of the pMOL30-encoded copper resistance in Cupriavidus metallidurans strain CH34. Microbiology 152: 1765–1776.
Monsieurs, P., Moors, H., Van Houdt, R., Janssen, P.J., Janssen, A., Coninx, I., et al. (2011) Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network. Biometals 24: 1133–1151.
Pell, J., Hintze, A., Canino-Koning, R., Howe, A., Tiedje, J.M., and Brown, C.T. (2012) Scaling metagenome sequence assembly with probabilistic de Bruijn graphs. Proc Natl Acad Sci USA 109: 13272–13277.
Plewniak, F., Koechler, S., Navet, B., Dugat-Bony, E., Bouchez, O., and Peyret, P. (2013) Metagenomic insights into microbial metabolism affecting arsenic dispersion in Mediterranean marine sediments. Mol Ecol 22: 4870–4883.
Rensing, C., and Grass, G. (2003) Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 27: 197–213.
Rensing, C., Fan, B., Sharma, R., Mitra, B., and Rosen, B.P. (2000) CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci USA 97: 652–656.
Roosa, S., Wattiez, R., Prygiel, E., Lesven, L., Billon, G., and Gillan, D.C. (2014) Bacterial metal resistance genes and metal bioavailability in contaminated sediments. Environ Pollut 189: 143–151.
Sendra, V., Cannella, D., Bersch, B., Fieschi, F., Ménage, S., Lascoux, D., and Covès, J. (2006) CopH from Cupriavidus metallidurans CH34. A novel periplasmic copper-binding protein. Biochemistry 45: 5557–5566.
Vallenet, D., Belda, E., Calteau, A., Cruveiller, S., Engelen, S., Lajus, A., et al. (2013) MicroScope – an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res 41: D636–D647. (Database issue):
Wang, X., Chen, M., Xiao, J., Hao, L., Crowley, D.E., Zhang, Z., et al. (2015) Genome sequence analysis of the naphthenic acid degrading and metal resistant bacterium Cupriavidus gilardii CR3. PLoS One 10: e0132881.
Wilde, E. (1962) Untersuchungen über Wachstum und Speicherstoffsynthese von Hydrogenomonas. Arch. Mikrobiol 43: 109–137.
Zerbino, D.R., and Birney, E. (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18: 821–829.