Stassin, S.* , ENGLEBERT, A.* , Amel, O.* , Siebert, X., & Mahmoudi, S. (29 May 2024). Explaining Through Multimodal Transformer Input Sampling [Paper presentation]. Infortech Day 2024, Mons, Belgium. ![]() * These authors have contributed equally to this work. |
![]() ![]() | Stassin, S., Corduant, V., MAHMOUDI, S., & Siebert, X. (30 December 2023). Explainability and Evaluation of Vision Transformers: An In-Depth Experimental Study. Electronics, 13 (1), 175. doi:10.3390/electronics13010175 ![]() |
Stassin, S., Amel, O., Siebert, X., & Mahmoudi, S. (24 May 2023). Best Approaches for Customs Fraud Detection [Paper presentation]. Infortech Day. |
![]() ![]() | Stassin, S., Englebert, A., Nefack, G., Albert, J., Versbraegen, N., Peiffer, G., Doh, M., Riche, N., Frenay, B., & De Vleeschouwer, C. (2023). An Experimental Investigation into the Evaluation of Explainability Methods. Communications in Computer and Information Science. ![]() |
![]() ![]() | Stassin, S., Amel, O., Mahmoudi, S., & Siebert, X. (2023). Similarity versus Supervision: Best Approaches for HS Code Prediction. In ESANN 2023 proceedings (31st). i6doc.com. ![]() |
![]() ![]() | Englebert, A., Stassin, S., Nanfack, G., Mahmoudi, S., Siebert, X., Cornu, O., & De Vleeschouwer, C. (2023). Explaining through Transformer Input Sampling. In Proceedings of the IEEE/CVF International Conference on Computer Vision. IEEE Xplore. doi:10.1109/ICCVW60793.2023.00088 ![]() |
![]() ![]() | Amel, O., Stassin, S., Mahmoudi, S., & Siebert, X. (2023). Multimodal Approach for Harmonized System Code Prediction. In ESANN 2023 proceedings (31st). i6doc.com. ![]() |
Stassin, S., Versbraegen, N., Nanfack, G., Jean, E., & Duboquet, F. (September 2022). Bias Detection On Image Data and their Mitigation on Models [Paper presentation]. TRAIL Workshop 2022. |
Amel, O., Mahmoudi, S., Siebert, X., & Stassin, S. (30 March 2022). Review of multimodal approaches [Paper presentation]. Infortech day on Data science, Mons, Belgium. |
Stassin, S.* , Amel, O., Mahmoudi, S., & Siebert, X. (30 March 2022). Artificial Intelligence and Natural Language Processing for Customs Fraud Prediction [Paper presentation]. InforTech Day, Mons, Belgium. ![]() |
![]() ![]() | Mahmoudi, S., Stassin, S., Daho, M. E. H., Lessage, X., & Mahmoudi, S. (2021). Explainable Deep Learning for Covid-19 Detection Using Chest X-ray and CT-Scan Images. In Intelligent Healthcare Informatics for Fighting the COVID-19 and Other Pandemics and Epidemics (pp. 323-338). Springer. |
![]() ![]() | Mahmoudi, S., Stassin, S., Daho, M. E. H., Lessage, X., & Mahmoudi, S. (2021). Explainable Deep Learning for Covid-19 detection using chest X-ray and CT images. In Intelligent Healthcare Informatics for Fighting the COVID-19 and Other Pandemics and Epidemics. Springer. doi:10.1007/978-3-030-72752-9_16 ![]() |