[en] Underground Pumped Hydro-Energy Storage stations are sustainable options to enhance storage capacity and thus the flexibility of energy systems. Efficient management of such units requires high-performance optimization algorithms able to find solutions in a very restricted timing to comply with the responsive energy markets. In this context, parallel computing offers a valuable solution to ensure appropriate decisions that maximize the profit of the station operator, while guaranteeing the safety of the energy network. This study investigates the use of three existing algorithms in Parallel Bayesian Optimization, namely q-EGO, BSP-EGO and TuRBO. The three algorithms have different inherent behaviors in terms of parallel potential and, even though TuRBO scales better, q-EGO remains the best choice regarding the final outcomes for all investigated batch sizes and manages to get up to 5 times more profits than other approaches.
J.-F. Toubeau, J. Bottieau, Z. De Grève, F. Vallée, and K. Bruninx, "Data-driven scheduling of energy storage in day-ahead energy and reserve markets with probabilistic guarantees on real-time delivery, " IEEE Transactions on Power Systems, vol. 36, no. 4, pp. 2815-2828, 2021.
M. Gobert, J. Gmys, J.-F. Toubeau, F. Vallée, N. Melab, and D. Tuyttens, "Surrogate-assisted optimization for multi-stage optimal scheduling of virtual power plants, " in 2019 International Conference on High Performance Computing Simulation (HPCS), 2019, pp. 113-120.
B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas, "Taking the human out of the loop: A review of Bayesian optimization, " Proceedings of the IEEE, vol. 104, no. 1, pp. 148-175, 2016.
D. Ginsbourger, R. Le Riche, and L. Carraro, "A multi-points criterion for deterministic parallel global optimization based on kriging, " 03 2008.
M. Gobert, J. Gmys, N. Melab, and D. Tuyttens, "Adaptive Space Partitioning for Parallel Bayesian Optimization, " in HPCS 2020-The 18th International Conference on High Performance Computing Simulation, Barcelona / Virtual, Spain, Mar. 2021. [Online]. Available: Https://hal. inria. fr/hal-03121209
D. Eriksson, M. Pearce, J. R. Gardner, R. Turner, and M. Poloczek, "Scalable global optimization via local Bayesian optimization, " 2020.
L. V. L. Abreu, M. E. Khodayar, M. Shahidehpour, and L. Wu, "Riskconstrained coordination of cascaded hydro units with variable wind power generation, " IEEE Transactions on Sustainable Energy, vol. 3, no. 3, pp. 359-368, 2012.
J.-F. Toubeau, Z. De Grève, and F. Vallée, "Medium-term multimarket optimization for virtual power plants: A stochastic-based decision environment, " IEEE Transactions on Power Systems, vol. 33, no. 2, pp. 1399-1410, 2018.
R. Montero, T. Wortberg, J. Binias, and A. Niemann, "Integrated assessment of underground pumped-storage facilities using existing coal mine infrastructure, " 07 2016, pp. 953-960.
J.-F. Toubeau, Z. De Grève, P. Goderniaux, F. Vallée, and K. Bruninx, "Chance-constrained scheduling of underground pumped hydro energy storage in presence of model uncertainties, " IEEE Transactions on Sustainable Energy, vol. 11, no. 3, pp. 1516-1527, 2020.
E. Pujades, P. Orban, S. Bodeux, P. Archambeau, S. Erpicum, and A. Dassargues, "Underground pumped storage hydropower plants using open pit mines: How do groundwater exchanges influence the efficiency?" Applied Energy, vol. 190, pp. 135-146, 2017. [Online]. Available: Https://www. sciencedirect. com/science/article/pii/ S0306261916318608
R. Ponrajah, J. Witherspoon, and F. Galiana, "Systems to optimize conversion efficiencies at ontario hydro's hydroelectric plants, " Power Systems, IEEE Transactions on, vol. 13, pp. 1044-1050, 09 1998.
Y. Pannatier, "Optimisation des stratégies de réglage d'une installation de pompage-turbinage à vitesse variable, " 01 2010.
C. Cheng, J. Wang, and X. Wu, "Hydro unit commitment with a head-sensitive reservoir and multiple vibration zones using milp, " IEEE Transactions on Power Systems, vol. 31, no. 6, pp. 4842-4852, 2016.
A. Arce, T. Ohishi, and S. Soares, "Optimal dispatch of generating units of the itaipu hydroelectric plant, " IEEE Transactions on Power Systems, vol. 17, no. 1, pp. 154-158, 2002.
J. P. S. Catalao, S. J. P. S. Mariano, V. M. F. Mendes, and L. A. F. M. Ferreira, "Scheduling of head-sensitive cascaded hydro systems: A nonlinear approach, " IEEE Transactions on Power Systems, vol. 24, no. 1, pp. 337-346, 2009.
P.-H. Chen and H.-C. Chang, "Genetic aided scheduling of hydraulically coupled plants in hydro-thermal coordination, " IEEE Transactions on Power Systems, vol. 11, no. 2, pp. 975-981, 1996.
B. Yu, X. Yuan, and J. Wang, "Short-term hydro-thermal scheduling using particle swarm optimization method, " Energy Conversion and Management, vol. 48, no. 7, pp. 1902-1908, 2007. [Online]. Available: Https://www. sciencedirect. com/science/article/pii/S0196890407000489
D. R. Jones, M. Schonlau, and W. J. Welch, "Efficient global optimization of expensive black-box functions, " Journal of Global Optimization, vol. 13, no. 4, pp. 455-492, Dec 1998. [Online]. Available: Https://doi. org/10. 1023/A:1008306431147
C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press, 2005.
D. Ginsbourger, R. L. Riche, and L. Carraro, "Kriging is well-suited to parallelize optimization, " 2010.
A. D. Palma, C. Mendler-Dünner, T. Parnell, A. Anghel, and H. Pozidis, "Sampling acquisition functions for batch Bayesian optimization, " 2019.
M. Gobert, J. Gmys, N. Melab, and D. Tuyttens, "Space Partitioning with multiple models for Parallel Bayesian Optimization, " in OLA 2021-Optimization and Learning Algorithm, Sicilia / Virtual, Italy, Jun. 2021. [Online]. Available: Https://hal. Archives-ouvertes. fr/hal-03324642
A. Artiba, V. Emelyanov, and S. Iassinovski, "Introduction to intelligent simulation: The rao language, " The Journal of the Operational Research Society, vol. 51, 10 2000.
J.-F. Toubeau, S. Iassinovski, E. Jean, J.-Y. Parfait, J. Bottieau, Z. De Greve, and F. Vallee, "A nonlinear hybrid approach for the scheduling of merchant underground pumped hydro energy storage, " IET Generation, Transmission Distribution, vol. 13, 09 2019.
M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham, A. G. Wilson, and E. Bakshy, "BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization, " in Advances in Neural Information Processing Systems 33, 2020. [Online]. Available: Https://proceedings. neurips. cc/ paper/2020/hash/f5b1b89d98b7286673128a5fb112cb9a-Abstract. html
R. Martinez-Cantin, "Bayesopt: A Bayesian optimization library for nonlinear optimization, experimental design and bandits, " Journal of Machine Learning Research, vol. 15, pp. 3735-3739, 11 2014.
F. Rehbach, M. Zaefferer, B. Naujoks, and T. Bartz-Beielstein, "Expected improvement versus predicted value in surrogate-based optimization, " in Proceedings of the 2020 Genetic and Evolutionary Computation Conference, ser. GECCO '20. New York, NY, USA: Association for Computing Machinery, 2020, p. 868-876. [Online]. Available: Https://doi. org/10. 1145/3377930. 3389816