Article (Scientific journals)
Confidence Interval Estimation for Cutting Tool Wear Prediction in Turning Using Bootstrap-Based Artificial Neural Networks
COLANTONIO, Lorenzo; EQUETER, Lucas; DEHOMBREUX, Pierre et al.
2024In Sensors, 24 (11), p. 3432
Peer Reviewed verified by ORBi
 

Files


Full Text
Colan2024_Confidence_BANN.pdf
Author postprint (3.06 MB)
Download

All documents in ORBi UMONS are protected by a user license.

Send to



Details



Abstract :
[en] The degradation of the cutting tool and its optimal replacement is a major problem in machining given the variability in this degradation even under constant cutting conditions. Therefore, monitoring the degradation of cutting tools is an important part of the process in order to replace the tool at the optimal time and thus reduce operating costs. In this paper, a cutting tool degradation monitoring technique is proposed using bootstrap-based artificial neural networks. Different indicators from the turning operation are used as input to the approach: the RMS value of the cutting force and torque, the machining duration, and the total machined length. They are used by the approach to estimate the size of the flank wear (VB). Different neural networks are tested but the best results are achieved with an architecture containing two hidden layers: the first one containing six neurons with a Tanh activation function and the second one containing six neurons with an ReLu activation function. The novelty of the approach makes it possible, by using the bootstrap approach, to determine a confidence interval around the prediction. The results show that the networks are able to accurately track the degradation and detect the end of life of the cutting tools in a timely manner, but also that the confidence interval allows an estimate of the possible variation of the prediction to be made, thus helping in the decision for optimal tool replacement policies.
Disciplines :
Mechanical engineering
Author, co-author :
COLANTONIO, Lorenzo  ;  Université de Mons - UMONS > Faculté Polytechnique > Service de Génie Mécanique
EQUETER, Lucas  ;  Université de Mons - UMONS > Faculté Polytechnique > Service de Génie Mécanique
DEHOMBREUX, Pierre  ;  Université de Mons - UMONS > Faculté Polytechnique > Service de Génie Mécanique
DUCOBU, François  ;  Université de Mons - UMONS > Faculté Polytechnique > Service de Génie Mécanique
Language :
English
Title :
Confidence Interval Estimation for Cutting Tool Wear Prediction in Turning Using Bootstrap-Based Artificial Neural Networks
Publication date :
26 May 2024
Journal title :
Sensors
ISSN :
1424-8220
eISSN :
1424-3210
Publisher :
MDPI AG
Volume :
24
Issue :
11
Pages :
3432
Peer reviewed :
Peer Reviewed verified by ORBi
Research unit :
F707 - Génie Mécanique
Research institute :
R400 - Institut de Recherche en Science et Ingénierie des Matériaux
R500 - Institut des Sciences et du Management des Risques
Available on ORBi UMONS :
since 31 May 2024

Statistics


Number of views
5 (1 by UMONS)
Number of downloads
21 (4 by UMONS)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi UMONS