Doctoral thesis (Dissertations and theses)
Energy-optimal configurations for High-Performance Computing applications: automated low-impact characterization and performance optimization of shared-memory applications
Ramos Gomes Da Silva, Vitor
2024
 

Files


Full Text
dissertation.pdf
Author postprint (4.97 MB) Creative Commons License - Attribution
Download

All documents in ORBi UMONS are protected by a user license.

Send to



Details



Keywords :
High-Performance Computing (HPC); Energy Optimization; Shared-Memory Applications; Dynamic Voltage and Frequency Scaling (DVFS); Dynamic Power Management (DPM); Performance Modeling; Energy Modeling; Application Fingerprint; Phase Division; PaScal Analyzer; Power-Aware Computing; Performance Counters; Scalability Analysis; Parallel Computing; Energy Efficiency
Abstract :
[en] Energy consumption is key to enabling exascale High-performance Com- puting (HPC). However, energy-optimized hardware and software combi- nations could still be inefficient if the software operates poorly. This work proposes a set of tools, models, and algorithms for energy optimization aimed at high-performance computing based on knowledge of the application and the specific hardware architecture. The main contributions of this work are. A framework called Parallel Scalability Suite (PaScal Suite) automati- cally measures and compares multiple executions of a parallel application according to various scenarios characterized by input size, number of threads, cores, and frequencies. As a result, PascalSuite can automate designing application models with an overhead of less than 1%. An entire system energy model based on the CPU frequency and the number of cores. The model aims to understand and optimize the energy behavior of parallel applications in HPC systems according to application parameters, such as the degree of parallelism, input load, and CPU parameters related to dynamic and static power. A methodology that combines measurement data with a heuristic algorithm to provide insights into choosing the best phase divisions. Our heuristic can reduce the scan space from 107000 to 102 with an average error of 10% and up to 38% reduction in energy consumption using optimal distribution compared to standard Linux DVFS. A novel normalized time representation of the application characterizes the application parameters and model, named application fingerprint.
Disciplines :
Computer science
Author, co-author :
Ramos Gomes Da Silva, Vitor  ;  Université de Mons - UMONS > Faculté Polytechnique > Service d'Electronique et Microélectronique
Language :
English
Title :
Energy-optimal configurations for High-Performance Computing applications: automated low-impact characterization and performance optimization of shared-memory applications
Defense date :
23 October 2024
Institution :
UMONS - Université de Mons [Faculte Polytechnique de Mons], Mons, Belgium
Degree :
Docteur en sciences de l’ingénieur et technologie
Promotor :
Valderrama, Carlos Alberto  ;  Université de Mons - UMONS > Faculté Polytechnique > Service d'Electronique et Microélectronique
Manneback, Pierre ;  Université de Mons - UMONS > Faculté Polytechnique > Service Informatique, Logiciel et Intelligence artificielle
Samuel XAVIER-DE-SOUZA;  Federal University of Rio Grande do Norte
President :
Dutoit, Thierry ;  Université de Mons - UMONS > Faculté Polytechnique > Service Information, Signal et Intelligence artificielle
Secretary :
Mahmoudi, Saïd  ;  Université de Mons - UMONS > Faculté Polytechnique > Service Informatique, Logiciel et Intelligence artificielle
Jury member :
Trabes, Emanuel ;  Université de Mons - UMONS > Faculté Polytechnique > Service d'Electronique et Microélectronique
Demétrios COUTINHO;  Federal Institute of Rio Grande do Norte
Lotfi GUEDRIA;  Centre d'excellence en technologies de l'information et de la communication
Research unit :
F109 - Electronique et Microélectronique
Research institute :
Infortech
Available on ORBi UMONS :
since 22 July 2025

Statistics


Number of views
32 (5 by UMONS)
Number of downloads
16 (1 by UMONS)

Bibliography


Similar publications



Contact ORBi UMONS