World Health Organization. WHO report, Global tuberculosis control. 2016.
Daffé, M., Crick, D., Jackson, M., Genetics of capsular polysaccharides and cell envelope (glyco)lipids. Microbiol Spectr, 2, 2014 MGM2-0021-2013.
Welsh, K.J., Abbott, A.N., Hwang, S.A., Indrigo, J., Armitige, L.Y., Blackburn, M.R., et al. A role for tumour necrosis factor-alpha, complement C5 and interleukin-6 in the initiation and development of the mycobacterial cord factor trehalose 6,6'-dimycolate induced granulomatous response. Microbiology 154 (2008), 1813–1824.
Katti, M.K., Dai, G., Armitige, L.Y., Rivera Marrero, C., Daniel, S., Singh, C.R., et al. The Delta fbpA mutant derived from Mycobacterium tuberculosis H37Rv has an enhanced susceptibility to intracellular antimicrobial oxidative mechanisms, undergoes limited phagosome maturation and activates macrophages and dendritic cells. Cell Microbiol 10 (2008), 1286–1303.
Chavadi, S.S., Edupuganti, U.R., Vergnolle, O., Fatima, I., Singh, S.M., Soll, C.E., et al. Inactivation of tesA reduces cell wall lipid production and increases drug susceptibility in mycobacteria. J Biol Chem 286 (2011), 24616–24625.
Wang, X.M., Lu, C., Soetaert, K., S'Heeren, C., Lanéelle, M.A., Lefèvre, P., et al. Biochemical and immunological characterization of a cpn60.1 knockout mutant of Mycobacterium bovis BCG. Microbiolog 157 (2011), 1205–1219.
Camacho, L.R., Constant, P., Raynaud, C., Laneelle, M.A., Triccas, J.A., Gicquel, B., et al. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem 276 (2001), 19845–19854.
Siméone, R., Constant, P., Malaga, W., Guilhot, C., Daffé, M., Chalut, C., Molecular dissection of the biosynthetic relationship between phthiocerol and phthiodiolone dimycocerosates and their critical role in the virulence and permeability of Mycobacterium tuberculosis. FEBS J 274 (2007), 1957–1969.
Soetaert, K., Rens, C., Wang, X.M., De Bruyn, J., Lanéelle, M.A., Laval, F., et al. Increased vancomycin susceptibility in mycobacteria: a new approach to identify synergistic activity against multidrug-resistant mycobacteria. Antimicrob Agents Chemother 59 (2015), 5057–5060.
Rens, C., Laval, F., Daffé, M., Denis, O., Frita, R., Baulard, A., et al. Effects of lipid-lowering drugs on vancomycin susceptibility of mycobacteria. Antimicrob Agents Chemother 60 (2016), 6193–6199.
Warrier, T., Tropis, M., Werngren, J., Diehl, A., Gengenbacher, M., Schlegel, B., et al. Antigen 85C inhibition restricts Mycobacterium tuberculosis growth through disruption of cord factor biosynthesis. Antimicrob Agents Chemother 56 (2012), 1735–1743.
Jackson, M., Raynaud, C., Lanéelle, M.A., Guilhot, C., Laurent-Winter, C., Ensergueix, D., et al. Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope. Mol Microbiol 31 (1999), 1573–1587.
Scheich, C., Puetter, V., Schade, M., Novel small molecule inhibitors of MDR Mycobacterium tuberculosis by NMR fragment screening of antigen 85C. J Med Chem 53 (2010), 8362–8367.
National Committee for Clinical Laboratory Standards, Wayne, P.A., Susceptibility testing of mycobacteria, nocardia, and other aerobic actinomycetes. Approved standard M24-A, 2003.
Lamichhane, G., Zignol, M., Blades, N.J., Geiman, D.E., Dougherty, A., Grosset, J., et al. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Proc Natl Acad Sci U. S. A 100 (2003), 7213–7218.
Simeone, R., Huet, G., Constant, P., Malaga, W., Lemassu, A., Laval, F., et al. Functional characterization of three O-methyltransferases involved in the biosynthesis of phenolglycolipids in Mycobacterium tuberculosis. PLoS One, 8, 2013, e58954.
Queiroz, A., Medina-Cleghorn, D., Marjanovic, O., Nomura, D.K., Riley, L.W., Comparative metabolic profiling of mce1 operon mutant vs wild-type Mycobacterium tuberculosis strains. Pathog Dis, 73, 2015, ftv066.