El Adoui, M., Larhmam, M. A., Drisis, S., & Benjelloun, M. (2022). Explainable deep learning approach to predict chemotherapy effect on breast tumor’s MRI. In Ayman S. El-Baz and Jasjit S. Suri, State of the Art in Neural Networks and Their Applications (pp. 147-156). Elsevier. ![]() |
![]() ![]() | Hachache, R., Yahyaouy, A., Riffi, J., Tairi, H., Abibou, S., El adoui, M., & Benjelloun, M. (21 October 2024). Advancing personalized oncology: a systematic review on the integration of artificial intelligence in monitoring neoadjuvant treatment for breast cancer patients. BMC Cancer, 24 (1), 1300. doi:10.1186/s12885-024-13049-0 ![]() |
![]() ![]() | EL ADOUI, M., Drisis, S., & Benjelloun, M. (03 August 2022). New Explainable Deep Cnn Design For Classifying Breast Tumor Response Over Neoadjuvant Chemotherapy. Current Medical Imaging Formerly Current Medical Imaging Reviews, 18. doi:10.2174/1573405618666220803124426 ![]() |
![]() ![]() | El Adoui, M., Drisis, S., & Benjelloun, M. (16 June 2020). Multi-input deep learning architecture for predicting breast tumor response to chemotherapy using quantitative MR images. International Journal of Computer Assisted Radiology and Surgery, 1861-6429. ![]() |
Braman, N., El Adoui, M., Drisis, S., Vulchi, M., Benjelloun, M., Madabhushi, A., & (en collaboration avec 6 autres personnes ). (24 January 2020). Deep learning-based prediction of response to HER2-targeted neoadjuvant chemotherapy from pre-treatment dynamic breast MRI: A multi-institutional validation study. Nature Communications, 2020 (2020), 2001-2034. ![]() |
![]() ![]() | Stylianos, D., El Adoui, M., Flamen, P., Benjelloun, M., Dewind, R., Paesmans, M., Ignatiadis, M., Bali, M., & Lemort, M. (2019). Early prediction of neoadjuvant treatment outcome in locally advanced breast cancer using parametric response mapping and radial heterogeneity from breast MRI. Journal of Magnetic Resonance Imaging. ![]() |
![]() ![]() | El Adoui, M., Mahmoudi, S., LARHMAM, M. A., & Benjelloun, M. (29 June 2019). MRI Breast Tumor Segmentation Using Different Encoder and Decoder CNN Architectures. Computers, 8 (3), 52-63. doi:10.3390/computers8030052 ![]() |
El Adoui, M., Drisis, S., & Benjelloun, M. (2019). 3D Deep Learning approach to predict breast tumor response to chemotherapy using two DCE-MRI volumes. International Journal of Computer Assisted Radiology and Surgery. ![]() |
![]() ![]() | El Adoui, M., Vulchi, M., Braman, N., Turk, P., Etesami, M., Drisis, S., Plecha, D., Benjelloun, M., Madabhushi, A., & Abraham, J. (26 May 2019). Development and external validation of a deep learning model for predicting response to HER2-targeted neoadjuvant therapy from pretreatment breast MRI. Journal of Clinical Oncology, 37 (15), 593-593. doi:10.1200/JCO.2019.37.15_suppl.593 ![]() |
![]() ![]() | Mahmoudi, S., Belarbi, M. A., El Adoui, M., Larhmam, M., & Lecron, F. (2018). Real Time Web-based Toolbox for Computer Vision. Journal of Science and Technology of the Arts. ![]() |
El Adoui, M., Drisis, S., & Benjelloun, M. (2018). A PRM approach for early prediction of breast cancer response to chemotherapy based on registered MR images. International Journal of Computer Assisted Radiology and Surgery. ![]() |
![]() ![]() | El Adoui, M., Drisis, S., Larhmam, M., Lemort, M., & Benjelloun, M. (20 September 2017). Breast cancer heterogeneity analysis as index of response to treatment using MRI images: A review. Imaging in Medicine, 9 (4), 109-119. ![]() |
Amkrane, Y., El Adoui, M., & Benjelloun, M. (2020). Towards Breast Cancer Response Prediction using Artificial Intelligence and Radiomics [Paper presentation]. The 5th IEEE International Conference on Cloud Computing Technologies and Applications, Marrakech, Morocco. |
El Adoui, M., Braman, N., Vulchi, M., Turk, P., Etesami, M., Plecha, D., Stylianos, D., Benjelloun, M., Abraham, J., & Madabhushi, A. (2019). Validation of neural network approach for the prediction of HER2-targeted neoadjuvant chemotherapy response from pretreatment MRI: A multi-site study [Paper presentation]. SAN ANTONIO BREAST CANCER SYMPOSIUM, San Antonio, United States - Texas. |
![]() ![]() | Benjelloun, M., El Adoui, M., LARHMAM, M. A., & Mahmoudi, S. (2019). Automated Breast Tumor Segmentation in DCE-MRI Using Deep Learning [Paper presentation]. The 4th IEEE International Conference on Cloud Computing Technologies and Applications, Brussels, Belgium. |
El Adoui, M., Drisis, S., & Benjelloun, M. (2019). Predict breast tumor response to chemotherapy using a 3D deep learning architecture applied to DCE-MRI data [Paper presentation]. International Work-Conference on Bioinformatics and Biomedical Engineering, Granada, Spain. |
El Adoui, M., LARHMAM, M. A., Drisis, S., & Benjelloun, M. (2019). Deep Learning approach predicting breast tumor response to neoadjuvant treatment using DCE-MRI volumes acquired before and after chemotherapy [Paper presentation]. SPIE MEDICAL IMAGING Computer-Aided Diagnosis, San Diego, United States - California. |
![]() ![]() | Debauche, O., Mahmoudi, S., Belarbi, M. A., El Adoui, M., & Mahmoudi, S. (2018). Internet of Things: learning and practices: Application to Smart Home [Paper presentation]. International Conference on Advanced Communication Technologies and Networking (CommNet'18), Marrakech, Morocco. doi:10.1109/COMMNET.2018.8360247 |
![]() ![]() | El Adoui, M., Drisis, S., & Benjelloun, M. (2017). Analyzing Breast Tumor Heterogeneity To Predict The Response To Chemotherapy Using 3D MR Images Registration [Paper presentation]. International Conference on Smart Digital Environment (ICSDE'17), Rabat, Morocco. |
Mahmoudi, S., El Adoui, M., Belarbi, M. A., Larhmam, M., & Lecron, F. (2017). Cloud-based Platform for Computer Vision Applications [Paper presentation]. International Conference on Smart Digital Environment (ICSDE'17), Rabat, Morocco. |