Appelhans Y.S., Thomsen J., Pansch C., Melzner F., Wahl M. Sour times: seawater acidification effects on growth, feeding behaviour and acid-base status of Asterias rubens and Carcinus maenas. Mar. Ecol. Prog. Ser. 2012, 459:85-97.
Binyon J. Physiology of Echinoderms 1972, Pergamon Press, Oxford, New York.
Borremans C., Hermans J., Baillon S., André L., Dubois P. Salinity effects on the Mg/Ca and Sr/Ca in starfish skeletons and the echinoderm relevance for paleoenvironmental reconstructions. Geology 2009, 37:351-354.
Caldeira K., Wickett M. Anthropogenic carbon and ocean pH. Nature 2003, 425:365.
Caldeira K., Wickett M. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J. Geophys. Res. 2005, 110:C09S04.
Catarino A., Cabral H.N., Peeters K., Pernet P., Punjabi U., Dubois P. Metal concentrations, sperm motility, and RNA/DNA ratio in two echinoderm species from a highly contaminated fjord (the Sørfjord, Norway). Environ. Toxicol. Chem. 2008, 27:1553-1560.
Catarino A.I., Bauwens M., Dubois P. Acid-base balance and metabolic response of the sea urchin Paracentrotus lividus to different seawater pH and temperatures. Environ. Sci. Pollut. Res. 2012, 19:2344-2353.
Christensen A.B., Nguyen H.D., Byrne M. Thermotolerance and the effects of hypercapnia on the metabolic rate of the ophiuroid Ophionereis schayeri: inferences for survivorship in a changing ocean. J. Exp. Mar. Biol. Ecol. 2011, 403:31-38.
Cole R.N., Burggren W.W. The contribution of respiratory papulae and tube feet to oxygen uptake in the sea star Asterias forbesi (Desor). Mar. Biol. Lett. 1981, 2:279-287.
DelValls T.A., Dickson A.G. The pH of buffers based on 2-amino-2-hydroxymethyl-1,3-propanediol ('Tris') in synthetic seawater. Deep-Sea Res. 1998, 45:1541-1554.
Dickson A.G. Standard potential of the reaction AgCls+1/2H2=Ags+HClAq and the standard acidity constant of the ion HSO4- in synthetic sea-water from 273.15-K to 318.15-K. J. Chem. Thermodyn. 1990, 22:113-127.
Dickson A.G., Millero F.J. A comparison of the equilibrium-constants for the dissociation of carbonic-acid in seawater media. Deep-Sea Res. 1987, 34:1733-1743.
Dupont S., Thorndyke M. Relationship between CO2-driven changes in extracellular acid-base balance and cellular immune response in two polar echinoderm species. J. Exp. Mar. Biol. Ecol. 2012, 424-425:32-37.
Feely R.A., Sabine C.L., Hernandez-Ayon M.J., Ianson D., Hales B. Evidence for upwelling of corrosive "acidified" water onto the continental shelf. Science 2008, 320:1490-1492.
Gattuso J.-P., Hansson L. Ocean Acidification 2011, Oxford University Press, USA.
Gooding R.A., Harley C., Tang E. Elevated water temperature and carbon dioxide concentration increase the growth of a keystone echinoderm. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:9316-9321.
Gran G. Determination of the equivalence point in potentiometric titrations. Part II. Analyst 1952, 77:661-671.
Guillou M., Joly-Turquin G., Leyzour S., Pernet P., Dubois P. Factors controlling juvenile growth and population structure of the starfish Asterias rubens in intertidal habitats: field and experimental approaches. J. Mar. Biol. Assoc. UK 2012, 92:367-378.
Gutknecht J., Bisson M.A., Tosteson F.C. Diffusion of carbon dioxide through lipid bilayer membranes: effects of carbonic anhydrase, bicarbonate, and unstirred layers. J. Gen. Physiol. 1977, 69:779-794.
Hall-Spencer J.M., Rodolof-Metalpa R., Martin S., Ransome E., Fine M., Turner S., Rowley S., Tedesco D., Buia M.C. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 2008, 454:96-99.
Helmuth B., Kingsolver J.G., Carrington E. Biophysics, physiological ecology, and climate change: does mechanism matter?. Annu. Rev. Physiol. 2005, 67:177-201.
Hennebert E., Haesaerts D., Dubois P., Flammang P. Evaluation of the different forces brought into play during tube foot activities in sea stars. J. Exp. Biol. 2010, 213:1162-1174.
Henry R.P. The role of carbonic anhydrase in blood ion and acid-base regulation. Am. Zool. 1984, 24:241-251.
Hermans J., Borremans C., Willenz P., André L., Dubois P. Temperature, salinity and growth rate dependences of Mg/Ca and Sr/Ca ratios of the skeleton of the sea urchin Paracentrotus lividus (Lamarck): an experimental approach. Mar. Biol. 2010, 157:1293-1300.
Hernroth B., Baden S., Thorndyke M., Dupont S. Immune suppression of the echinoderm Asterias rubens (L.) following long-term ocean acidification. Aquat. Toxicol. 2011, 103:222-224.
Hidaka M. Effects of certain physico-chemical agents on the mechanical properties of the catch apparatus of the sea-urchin spine. J. Exp. Biol. 1983, 103:15-29.
Hofmann G.E., Todgham A.E. Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Annu. Rev. Physiol. 2010, 72:127-145.
Houlihan D.F., Duthie G. Measurement of oxygen consumption and sampling of body fluids of echinoderms in situ. J. Exp. Mar. Biol. Ecol. 1981, 51:97-106.
Hughes S.J., Ruhl H.A., Hawkins L.E., Hauton C., Boorman B., Billett D.S. Deep-sea echinoderm oxygen consumption rates and an interclass comparison of metabolic rates in Asteroidea, Crinoidea, Echinoidea, Holothuroidea and Ophiuroidea. J. Exp. Biol. 2011, 214:2512-2521.
Hurd C.L., Cornwall C.E., Currie K., Hepburn C.D., McGraw C.M., Hunter K.A., Boyd P.W. Metabolically induced pH fluctuations by some coastal calcifiers exceed projected 22nd century ocean acidification: a mechanism for differential susceptibility?. Glob. Chang. Biol. 2011, 17:3254-3262.
IPCC Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change 2007, Cambridge University Press, Cambridge.
Joly-Turquin G., Dubois P., Leyzour S., Pernet P., De Ridder F., Pintelon R., Guillou M. Contrasting relationships between pyloric caecum and gonad growth in the starfish Asterias rubens: combined field and experimental approaches. J. Mar. Biol. Assoc. UK 2012, 10.1017/S0025315412000124.
Kvalvågnæs K. Tagging of the starfish, Asterias rubens L. Sarsia 1972, 49:81-88.
Laudien J., Whal M. Indirect effects of epibiosis on host mortality: seastar predation on differently fouled mussels. Mar. Ecol. 1999, 20:35-47.
McElroy D.J., Nguyen H.D., Byrne M. Respiratory response of the intertidal seastar Parvulastra exigua to contemporary and near-future pulses of warming and hypercapnia. J. Exp. Mar. Biol. Ecol. 2012, 416-417:1-7.
Mehrbach C., Culberso C.H., Hawley J.E., Pytkowic R.M. Measurement of apparent dissociation-constants of carbonic-acid in seawater at atmospheric-pressure. Limnol. Oceanogr. 1973, 18:897-907.
Melzner F., Gutowska M.A., Langenbuch M., Dupont S., Lucassen M., Thorndyke M.C., Bleich M., Pörtner H.-O. Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny?. Biogeosciences 2009, 6:2313-2331.
Meyer H. Die atmung von Asterias rubens und ihre Abhängigkeit von verschiedenen Außfaktoren. Dissertation der Philosophischen Fakultät der Christian-Albrechts-Universität zu Kiel 1935.
Miles H., Widdicombe S., Spicer J.I., Hall-Spencer J. Effects of anthropogenic seawater acidification on acid-base balance in the sea urchin Psammechinus miliaris. Mar. Pollut. Bull. 2007, 54:89-96.
Millero F.J., Huang F. The density of seawaters as a function of salinity (5 to 70gkg-1) and temperature (273.15 to 363.15K). Ocean Sci. 2009, 5:91-100.
Millero F.J., Poisson A. International one-atmosphere equation of state of seawater. Deep-Sea Res. 1981, 28:625-629.
Motokawa T. Connective tissue catch in echinoderms. Biol. Rev. 1984, 59:255-270.
Motokawa T. Effects of ionic environment on viscosity of Triton-extracted catch connective tissue of a sea cucumber body wall. Comp. Biochem. Physiol. 1994, 109:613-622.
Moulin L., Catarino A.I., Claessens T., Dubois P. Effects of seawater acidification on early development of the intertidal sea urchin Paracentrotus lividus (Lamarck 1816). Mar. Pollut. Bull. 2011, 62:48-54.
Pierrot D., Lewis E., Wallace D. MS Excel Program Developed for CO2 System Calculations. ORNL/CDIAC-105a 2006, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee.
Pörtner H.-O., Langenbuch M., Reipschläger A. Biological impact of elevated ocean CO2 concentrations: lessons from animal physiology and earth history. J. Oceanogr. 2004, 60:705-718.
Sabine C., Feely R., Gruber N., Key R., Lee K., Bullister J., Wanninkhof R., Wong C., Wallace D., Tilbrook B., Millero F., Pang T.-H., Kozyr A., Ono T., Rios A. The oceanic sink for CO2. Science 2004, 305:367-371.
Santos R., Haesaerts D., Jangoux M., Flammang P. The tube feet of sea urchins and sea stars contain functionally different mutable collagenous tissues. J. Exp. Biol. 2005, 208:2277-2288.
Schram J.B., McClintock J.B., Angus R.A., Lawrence J.M. Regenerative capacity and biochemical composition of the sea star Luidia clathrata (Say) (Echinodermata: Asteroidea) under conditions of near-future ocean acidification. J. Exp. Mar. Biol. Ecol. 2011, 407:266-274.
Seibel B.A., Walsh P.J. Biological impacts of deep-sea carbon dioxide injection inferred from indices of physiological performance. J. Exp. Biol. 2003, 206:641-650.
Sommer U., Meusel B., Stielau C. An experimental analysis of the importance of body-size in seastar-mussel predator-prey relationship. Acta Oecol. 1999, 20:81-86.
Spicer J.I., Taylor A.C., Hill A.D. Acid-base status in the sea urchins Psammechinus miliaris and Echinus esculents (Echinodermata: Echinoidea) during emersion. Mar. Biol. 1988, 99:527-534.
Spicer J.I., Widdicombe S., Needham H.R., Berge J.A. Impact of CO2-acidified seawater on the extracellular acid-base balance of the northern sea urchin Strongylocentrotus droebachiensis. J. Exp. Mar. Biol. Ecol. 2011, 407:19-25.
Stickle W.B., Diehl W.J. Effects of salinity on echinoderms. Echinoderm Studies 1987, vol. 2:235-285. A.A. Balkema, Rotterdam, The Netherlands.
Stumpp M., Wren J., Melzner F., Thorndyke M.C., Dupont S.T. CO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay. Comp. Biochem. Physiol. 2011, 160:331-340.
Stumpp M., Trübenbach K., Brennecke D., Hu M.Y., Melzner F. Resource allocation and extracellular acid-base status in the sea urchin Strongylocentrotus droebachiensis in response to CO2 induced seawater acidification. Aquat. Toxicol. 2012, 110-111:194-207.
Temara A., Warnau M., Jangoux M., Dubois P. Factors influencing the concentrations of heavy metals in the asteroid Asterias rubens L. (Echinodermata). Sci. Total. Environ. 1997, 203:51-63.
The Royal Society Ocean acidification due to increasing atmospheric carbon dioxide. Policy document 12/05, June 2005 2005.
Todgham A.E., Hofmann G.E. Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification. J. Exp. Biol. 2009, 212:2579-2594.
Truchot J.P., Duhamel-Jouve A. Oxygen and carbon dioxide in the marine intertidal environment: diurnal and tidal changes in rockpools. Respir. Physiol. 1980, 39:241-254.
Tyrrell T. Anthropogenic modification of the oceans. Phil. Trans. R. Soc. A 2011, 369:887-908.
Webster S.K., Giese A.C. Oxygen consumption of the purple sea urchin with special reference to the reproductive cycle. Biol. Bull. 1975, 148:165-180.
Wilkie I.C., Candia Carnevali M.D., Trotter J.A. Mutable collagenous tissue: recent progress and an evolutionary perspective. Echinoderms: München 2004, 371-378. Taylor & Francis Group, London, UK. T. Heinzeller, J.H. Nebelsick (Eds.).
Wood H.J., Spicer J.I., Widdicombe S. Ocean acidificiation may increase calcification rates, but at a cost. Proc. R. Soc. B 2008, 275:1767-1773.
Wood H.L., Spicer J.I., Lowe D.M., Widdicombe S. Interaction of ocean acidification and temperature; the high cost of survival in the brittlestar Ophiura ophiura. Mar. Biol. 2010, 157:2001-2013.
Wood H.L., Spicer J.I., Kendall M.A., Lowe D.M., Widdicombe S. Ocean warming and acidification; implications for the Arctic brittlestar Ophiocten sericeum. Polar Biol. 2011, 34:1033-1044.