World Health Organization. 2015. WHO report: global tuberculosis control. World Health Organization, Geneva, Switzerland.
Acosta CD, Dadu A, Ramsay A, Dara M. 2014. Drug-resistant tuberculosis in Eastern Europe: challenges and ways forward. Public Health Action 4:S3-S12.
Olaru ID, von Groote-Bidlingmaier F, Heyckendorf J, Yew WW, Lange C, Chang KC. 2015. Novel drugs against tuberculosis: a clinician's perspective. Eur Respir J 45:1119-1131. http://dx.doi.org/10.1183/09031936.00162314.
Mdluli K, Kaneko T, Upton A. 2015. The tuberculosis drug discovery and development pipeline and emerging drug targets. Cold Spring Harb Perspect Med 5:a021154. http://dx.doi.org/10.1101/cshperspect.a021154.
Neyrolles O, Guilhot C. 2011. Recent advances in deciphering the contribution of Mycobacterium tuberculosis lipids to pathogenesis. Tuberculosis 91:187-195. http://dx.doi.org/10.1016/j.tube.2011.01.002.
Parish T, Liu J, Nikaido H, Stoker NG. 1997. A Mycobacterium smegmatis mutant with a defective inositol monophosphate phosphatase gene homolog has altered cell envelope permeability. J Bacteriol 179:7827-7833.
Soetaert K, Rens C, Wang XM, De Bruyn J, Lanéelle MA, Laval F, Lemassu A, Daffé M, Bifani P, Fontaine V, Lefèvre P. 2015. Increased vancomycin susceptibility in mycobacteria: a new approach to identify synergistic activity against multidrug-resistant mycobacteria. Antimicrob Agents Chemother 59:5057-5060. http://dx.doi.org/10.1128/AAC.04856-14.
Daffé M, Crick D, Jackson M. 2014. Genetics of capsular polysaccharides and cell envelope (glyco)lipids. Microbiol Spectrum 2:MGM2-0021-2013. http://dx.doi.org/10.1128/microbiolspec.MGM2-0021-2013.
Hadváry P, Sidler W, Meister W, Vetter W, Wolfer H. 1991. The lipase inhibitor tetrahydrolipstatin binds covalently to the putative active site serine of pancreatic lipase. J Biol Chem 266:2021-2027.
Haalck L, Spener F. 1997. On the inhibition of microbial lipases by tetrahydrolipstatin. Methods Enzymol 286:252-263. http://dx.doi.org/10.1016/S0076-6879(97)86014-4.
Saxena AK, Roy KK, Singh S, Vishnoi SP, Kumar A, Kashyap VK, Kremer L, Srivastava R, Srivastava BS. 2013. Identification and characterisation of small-molecule inhibitors of Rv3097c-encoded lipase (LipY) of Mycobacterium tuberculosis that selectively inhibit growth of bacilli in hypoxia. Int J Antimicrob Agents 42:27-35. http://dx.doi.org/10.1016/j.ijantimicag.2013.03.007.
Dhouib R, Ducret A, Hubert P, Carrière F, Dukan S, Canaan S. 2011. Watching intracellular lipolysis in mycobacteria using time lapse fluorescence microscopy. Biochim Biophys Acta 1811:234-241. http://dx.doi.org/10.1016/j.bbalip.2011.01.001.
Singh G, Arya S, Narang D, Jadeja D, Singh G, Gupta UD, Singh K, Kaur J. 2014. Characterization of an acid inducible lipase Rv3203 from Mycobacterium tuberculosis H37Rv. Mol Biol Rep 41:285-296. http://dx.doi.org/10.1007/s11033-013-2861-3.
Côtes K, Dhouib R, Douchet I, Chahinian H, de Caro A, Carrière F, Canaan S. 2007. Characterization of an exported monoglyceride lipase from Mycobacterium tuberculosis possibly involved in the metabolism of host cell membrane lipids. Biochem J 408:417-427. http://dx.doi.org/10.1042/BJ20070745.
Low KL, Rao PS, Shui G, Bendt AK, Pethe K, Dick T, Wenk MR. 2009. Triacylglycerol utilization is required for regrowth of in vitro hypoxic non-replicating Mycobacterium bovis bacillus Calmette-Guerin. J Bacteriol 191:5037-5043. http://dx.doi.org/10.1128/JB.00530-09.
Crellin PK, Vivian JP, Scoble J, Chow FM, West NP, Brammananth R, Proellocks NI, Shahine A, Le Nours J, Wilce MC, Britton WJ, Coppel RL, Rossjohn J, Beddoe T. 2010. Tetrahydrolipstatin inhibition, functional analyses, and three-dimensional structure of a lipase essential for mycobacterial viability. J Biol Chem 285:30050-30060. http://dx.doi.org/10.1074/jbc.M110.150094.
Seeliger JC, Holsclaw CM, Schelle MW, Botyanszki Z, Gilmore SA, Tully SE, Niederweis M, Cravatt BF, Leary JA, Bertozzi CR. 2012. Elucidation and chemical modulation of sulfolipid-1 biosynthesis in Mycobacterium tuberculosis. J Biol Chem 287:7990-8000. http://dx.doi.org/10.1074/jbc.M111.315473.
Parker SK, Barkley RM, Rino JG, Vasil ML. 2009. Mycobacterium tuberculosis Rv3802c encodes a phospholipase/thioesterase and is inhibited by the antimycobacterial agent tetrahydrolipstatin. PLoS One 4:e4281. http://dx.doi.org/10.1371/journal.pone.0004281.
Majumdar A, Wankhade G, Kamble PD, Harinath BC. 2011. Effect of HIV protease inhibitors and orlistat on mycobacterial ES-31 serine protease, a potential drug target in Mycobacterium tuberculosis. Indian J Tuberc 58:4-10.
Ravindran MS, Rao SP, Cheng X, Shukla A, Cazenave-Gassiot A, Yao SQ, Wenk MR. 2014. Targeting lipid esterases in mycobacteria grown under different physiological conditions using activity-based profiling with tetrahydrolipstatin (THL). Mol Cell Proteomics 13:435-448. http://dx.doi.org/10.1074/mcp.M113.029942.
Rao A, Ranganathan A. 2004. Interaction studies on proteins encoded by the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Mol Genet Genomics 272:571-579. http://dx.doi.org/10.1007/s00438-004-1088-3.
Parihar SP, Guler R, Khutlang R, Lang DM, Hurdayal R, Mhlanga MM, Suzuki H, Marais AD, Brombacher F. 2014. Statin therapy reduces the Mycobacterium tuberculosis burden in human macrophages and in mice by enhancing autophagy and phagosome maturation. J Infect Dis 209:754-763. http://dx.doi.org/10.1093/infdis/jit550.
Skerry C, Pinn ML, Bruiners N, Pine R, Gennaro ML, Karakousis PC. 2014. Simvastatin increases the in vivo activity of the first-line tuberculosis regimen. J Antimicrob Chemother 69:2453-2457. http://dx.doi.org/10.1093/jac/dku166.
Garbe TR. 2004. Coinduction of methyltransferase Rv0560c by naphthoquinones and fibric acids suggests attenuation of isoprenoid quinone action in Mycobacterium tuberculosis. Can J Microbiol 50:771-778. http://dx.doi.org/10.1139/w04-067.
Reich-Slotky R, Kabbash C, Della-Latta P, Blanchard J, Feinmark S, Freeman S, Kaplan G, Shuman H, Silverstein S. 2009. Gemfibrozil inhibits Legionella pneumophila and Mycobacterium tuberculosis enoyl coenzyme a reductases and blocks intracellular growth of these bacteria in macrophages. J Bacteriol 191:5262-5271. http://dx.doi.org/10.1128/JB.00175-09.
Kim SJ, Hong M, Song KD, Lee HK, Ryoo S, Heo TH. 2014. Normalization of the levels of inflammatory molecules in Mycobacterium smegmatis-infected U937 cells by fibrate pretreatment. Biol Res 47:42. http://dx.doi.org/10.1186/0717-6287-47-42.
National Committee for Clinical Laboratory Standards. 2003. Susceptibility testing of mycobacteria, nocardia, and other aerobic actinomycetes; approved standard M24-A. National Committee for Clinical Laboratory Standards, Wayne, PA.
Lorian V. 2005. Antibiotics in laboratory medicine, 5th ed. Lippincott/ Williams & Wilkins, Philadelphia, PA.
Hsieh MH, Yu CM, Yu VL, Chow JW. 1993. Synergy assessed by checkerboard: a critical analysis. Diagn Microbiol Infect Dis 16:343-349. http://dx.doi.org/10.1016/0732-8893(93)90087-N.
Mathys V, Wintjens R, Lefevre P, Bertout J, Singhal A, Kiass M, Kurepina N, Wang XM, Mathema B, Baulard A, Kreiswirth BN, Bifani P. 2009. Molecular genetics of para-aminosalicylic acid resistance in clinical isolates and spontaneous mutants of Mycobacterium tuberculosis. Antimicrob Agents Chemother 53:2100-2109. http://dx.doi.org/10.1128/AAC.01197-08.
Werngren J, Klintz L, Hoffner SE. 2006. Evaluation of a novel kit for use with the BacT/ALERT 3D system for drug susceptibility testing of Mycobacterium tuberculosis. J Clin Microbiol 44:2130-2132. http://dx.doi.org/10.1128/JCM.02218-05.
David S. 2001. Synergic activity of D-cycloserine and β-chloro-D-alanine against Mycobacterium tuberculosis. J Antimicrob Chemother 47:203-206. http://dx.doi.org/10.1093/jac/47.2.203.
Singh P, Wesley C, Jadaun GP, Malonia SK, Das R, Upadhyay P, Faujdar J, Sharma P, Gupta P, Mishra AK, Singh K, Chauhan DS, Sharma VD, Gupta UD, Venkatesan K, Katoch VM. 2007. Comparative evaluation of Löwenstein-Jensen proportion method, BacT/ALERT 3D system, and enzymatic pyrazinamidase assay for pyrazinamide susceptibility testing of Mycobacterium tuberculosis. J Clin Microbiol 45:76-80. http://dx.doi.org/10.1128/JCM.00951-06.
Roxane Simeone Gaelle Huet Patricia Constant Wladimir Malaga Anne Lemassu Francoise Laval Mamadou Daffe Christophe Guilhot Christian Chalut. 2013. Functional characterization of three o-methyltransferases involved in the biosynthesis of phenolglycolipids in Mycobacterium tuberculosis. PLoS One 8:e58954. http://dx.doi.org/10.1371/journal.pone.0058954.
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C. 2015. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447-D452. http://dx.doi.org/10.1093/nar/gku1003.
Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, Bonner R, Aebersold R. 2012. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11:O111.016717-1-17. http://dx.doi.org/10.1074/mcp.O111.016717.
Belardinelli JM, Larrouy-Maumus G, Jones V, Sorio de Carvalho LP, McNeil MR, Jackson M. 2014. Biosynthesis and translocation of unsulfated acyltrehaloses in Mycobacterium tuberculosis. J Biol Chem 289:27952-27965. http://dx.doi.org/10.1074/jbc.M114.581199.
Kremer L, de Chastellier C, Dobson G, Gibson KJ, Bifani P, Balor S, Gorvel JP, Locht C, Minnikin DE, Besra GS. 2005. Identification and structural characterization of an unusual mycobacterial monomeromycolyl-diacylglycerol. Mol Microbiol 57:1113-1126. http://dx.doi.org/10.1111/j.1365-2958.2005.04717.x.
Boshoff HI, Myers TG, Copp BR, McNeil MR, Wilson MA, Barry CE. 2004. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J Biol Chem 279:40174-40184. http://dx.doi.org/10.1074/jbc.M406796200.
Waddell SJ, Stabler RA, Laing K, Kremer L, Reynolds RC, Besra GS. 2004. The use of microarray analysis to determine the gene expression profiles of Mycobacterium tuberculosis in response to anti-bacterial compounds. Tuberculosis 84:263-274. http://dx.doi.org/10.1016/j.tube.2003.12.005.